JAWAHARLAL COLLEGE OF ENGINEERING AND
TECHNOLOGY

(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala)
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
(NBA Accredited)

COURSE MATERIAL

CST 201 DATA STRUCTURES
VISION OF THE INSTITUTION

Emerge as a centre of excellence for professional education to produce high quality engineers

and entrepreneurs for the development of the region and the Nation.

MISSION OF THE INSTITUTION

e To become an ultimate destination for acquiring latest and advanced knowledge in the
multidisciplinary domains.

e To provide high quality education in engineering and technology through innovative
teaching-learning practices, research and consultancy, embedded with professional ethics.

e To promote intellectual curiosity and thirst for acquiring knowledge through outcome
based education.

e To have partnership with industry and reputed institutions to enhance the employability
skills of the students and pedagogical pursuits.

e To leverage technologies to solve the real life societal problems through community
services.
ABOUT THE DEPARTMENT

> Established in: 2008

» Courses offered: B.Tech in Computer Science and Engineering

» Affiliated to the A P J Abdul Kalam Technological University.

DEPARTMENT VISION

To produce competent professionals with research and innovative skills, by providing them

with the most conducive environment for quality academic and research oriented
undergraduate education along with moral values committed to build a vibrant nation.

DEPARTMENT MISSION

e Provide a learning environment to develop creativity and problem solving skills in a
professional manner.

Expose to latest technologies and tools used in the field of computer science.

Provide a platform to explore the industries to understand the work culture and
expectation of an organization.

Enhance Industry Institute Interaction program to develop the entrepreneurship skills.

Develop research interest among students which will impart a better life for the society
and the nation.

PROGRAMME EDUCATIONAL OBJECTIVES

Graduates will be able to

1.

Provide high-quality knowledge in computer science and engineering required for a
computer professional to identify and solve problems in various application domains.

Persist with the ability in innovative ideas in computer support systems and transmit the
knowledge and skills for research and advanced learning.

Manifest the motivational capabilities, and turn on a social and economic commitment to
community services.

PROGRAM OUTCOMES (POS)
Engineering Graduates will be able to:

Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization to the solution of complex engineering
problems.

. Problem analysis: Identify, formulate, review research literature, and analyze complex
engineering problems reaching substantiated conclusions using first principles of
mathematics, natural sciences, and engineering sciences.

. Design/development of solutions: Design solutions for complex engineering problems and

design system components or processes that meet the specified needs with appropriate
consideration for the public health and safety, and the cultural, societal, and environmental
considerations.

. Conduct investigations of complex problems: Use research-based knowledge and research
methods including design of experiments, analysis and interpretation of data, and synthesis
of the information to provide valid conclusions.

. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
engineering and IT tools including prediction and modeling to complex engineering
activities with an understanding of the limitations.

. The engineer and society: Apply reasoning informed by the contextual knowledge to
assess societal, health, safety, legal and cultural issues and the consequent responsibilities
relevant to the professional engineering practice.

. Environment and sustainability: Understand the impact of the professional engineering
solutions in societal and environmental contexts, and demonstrate the knowledge of, and
need for sustainable development.

. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
norms of the engineering practice.

. Individual and team work: Function effectively as an individual, and as a member or
leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as, being able to comprehend and
write effective reports and design documentation, make effective presentations, and give
and receive clear instructions.

. Project management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s own work, as a member
and leader in a team, to manage projects and in multidisciplinary environments.

. Life-long learning: Recognize the need for, and have the preparation and ability to
engage in independent and life-long learning in the broadest context of technological
change.

COURSE OUTCOMES

COURSE OUTCOMES

Design an algorithm for a computational task and calculate and
analyze the time/space

complexities of that algorithm.

Identify and Use appropriate data structures like arrays, linked
list, stacks and queues to

solve computational problems efficiently.

Categorize different memory management techniques and the
implementations of linear

data structures.

Represent and manipulate data using nonlinear data structures
like trees and graphs to

design algorithms for various applications.

Illustrate and understand various techniques for searching
,sorting and hashing algorithms

Design an algorithm for a computational task and calculate and
analyze the time/space

complexities of that algorithm.

PROGRAM SPECIFIC OUTCOMES (PSO)

The students will be able to

e Use fundamental knowledge of mathematics to solve problems using suitable analysis
methods, data structure and algorithms.

e Interpret the basic concepts and methods of computer systems and technical
specifications to provide accurate solutions.

e Apply theoretical and practical proficiency with a wide area of programming knowledge,
design new ideas and innovations towards research.

CO PO MAPPING

Note: H-Highly correlated=3, M-Medium correlated=2,L-Less correlated=1

CO PSO MAPPING
CO’S

GAPS IN THE SYLLABUS

TOPIC
TOWER OF HANOI PROBLEM

Reference Materials

Module 1 Basic Concepts of Data Structures

System Life Cycle, Algorithms, Performance Analysis, Space Complexity, Time Complexity,
Asymptotic Notation, Complexity Calculation of Simple Algorithms

SYSTEM LIFE CYCLE (SLC)

e Good programmers regard large scale computer programs as systems that

contain manycomplex interacting parts. (Systems: Large Scale Computer

Programs.)
e Assystems, these programs undergo a development process called System life cycle.(SLC
: Development Process of Programs)

Different Phases of System Life Cycle
Requirements
Analysis
Design
Refinement and coding
Verification

Requirement Phase:
All programming projects begin with a set of specifications that defines

the purpose ofthat program.

Requirements describe the information that the programmers are given
(input) and theresults (output) that must be produced.

Frequently the initial specifications are defined vaguely and we must
develop rigorousinput and output descriptions that include all cases.

Analysis Phase

In this phase the problem is break down into manageable pieces.

There are two approaches to analysis:-bottom up and top down.

Bottom up approach is an older, unstructured strategy that places an early

emphasis on coding fine points. Since the programmer does not have a master

plan for the project, the resulting program frequently has many loosely

connected, error ridden segments.

Top down approach is a structured approach divide the program into manageable segments.

This phase generates diagrams that are used to design the system.
Several alternate solutions to the programming problem are developed and
comparedduring this phase

Design Phase

This phase continues the work done in the analysis phase.

The designer approaches the system from the perspectives of both data objects
that theprogram needs and the operations performed on them.

The first perspective leads to the creation of abstract data types while the second
requiresthe specification of algorithms and a consideration of algorithm design
strategies.

Ex: Designing a scheduling system for university Data
objects: Students, courses, professors etc Operations:

insert, remove search etc

ie. We might add a course to the list of university courses, search for the courses taughtby

some professor etc.

Since abstract data types and algorithm specifications are language independent.
We must specify the information required for each data object and ignore coding
details.Ex: Student object should include name, phone number, social security

number etc.

Refinement and Coding Phase

In this phase we choose representations for data objects and write algorithms for
each operation on them.

Data objects representation can determine the efficiency of the algorithm related to
it. So we should write algorithms that are independent of data objects first.

Frequently we realize that we could have created a much better system. (May be we

realizethat one of our alternate design is superior than this). If our original design is

good, it can absorb changes easily.

5. Verification Phase

e This phase consists of

> developing correctness proofs for the program

> Testing the program with a variety of input data.
> Removing errors.

Correctness of Proofs

Programs can be proven correct using proofs.(like mathematics theorem)

Proofs are very time consuming and difficult to develop for large projects.

Scheduling constraints prevent the development of complete sets of proofs for a
larger system.

However, selecting algorithm that have been proven correct can reduce the numberof

errors.

Testing

Testing can be done only after coding.

Testing requires working code and set of test data.

Test data should be chosen carefully so that it includes all possible scenarios.

Good test data should verify that every piece of code runs correctly.

For example if our program contains a switch statement, our test data should be
chosen so that we can check each case within switch statement.

Error Removal

If done properly, the correctness of proofs and system test will indicate erroneous
code.

Removal of errors depends on the design and code.

While debugging large undocumented program written in ‘spaghetti’ code, each
corrected error possibly generates several new errors.

Debugging a well-documented program that is divided into autonomous units that

interact through parameters is far easier. This especially true if each unit is tested

separately and then integrated into system.

ALGORITHMS

Definition: An algorithm is a finite set of instructions to accomplish a particular task. In

afidition,all algorithms must satisfy the following criteria:

(1) Input. There are zero or more quantities that are externally supplied.

(2) Output. At least one quantity is produced.

(3) Definiteness. Each instruction is clear and unambiguous.

(4) Finiteness. If we trace out the instructions of an algorithm, then for all cases, the
algorithm terminates after a finite number of steps.

(5) Effectiveness. Every instruction must be basic enough to be carried out, in principle,
by a person using only pencil and paper. It is not enough that each operation be
definite as in (3); italso must be feasible.

We can describe algorithm in many ways

1. We can use a natural language like English

2. Graphical Representation called flow chart, but they work well only if the

algorithm issmall and simple.

Translating a Problem into an Algorithm

Example [Selection sort]: Suppose we must devise an algorithm that sorts a collection

of n > lelements of arbitrary type. A simple solution is given by the following

[Selection Sort: In each pass of the selection sort, the smallest element is selected from

theunsorted list and exchanged with the elements at the beginning of the unsorted list]

Consider the following depicted array as an example.

For the first position in the sorted list, the whole list is scanned sequentially. The first
positionwhere 14 is stored presently, we search the whole list and find that 10 is the
lowest value.

So we replace 14 with 10. After one iteration 10, which happens to be the minimum value
in thelist, appears in the first position of the sorted list

br the second position, where 33 is residing, we start scanning the rest of the list in a

We find that 14 is the second lowest value in the list and it should appear at the second
place. Weswap these values.

The same process is applied to the rest of the items in the
array.Following is a pictorial depiction of the entire

sorting process —

From those elements that are currently unsorted, find the smallest and place it next in

sortedlist

We assume that the elements are stored in an array ‘list’, such that the i integer is

stored inthe i Position list[i], 0 <=i <n

Algorithm 1.1 is our first attempt to deriving a solution

1.1 Selection sort algorithm

e We are written this partially in C and partially in English

e To turn the program 1.1 into a real C program, two clearly defined sub tasks are remain:
finding the smallest integer and interchanging it with list[i].

e We can solve this by using a function

1.2 Swap Function
e Toswap their values one could call swap(&a, &b)
e We can solve the first subtask by assuming that the minimum is the list[i]. Checking

list[i] with list[i+1], list[i+2] Jist[n-1]. Whenever we find a smaller number we

make it as the minimum. We reach list[n-1] we are finished.

#include <stdio.h>int
main()

{

int a[100], n, i, J, position, swap; printf("Enter
number of elements");scanf("%d", &n);

printf("Enter %d Numbersn™, n);for (i=0; i <n;
I++) scanf('%d", &a[i]);

for(i=0;1<n-1;i++)

{

position=i;

forG=i+1;j<n;j++)

{

if(a[position] > a[j]) position=j;
}

if(position !=1)

{

swap=a[i]; a[i]=a[position]; a[position]=swap;

¥

¥

printf("Sorted Array:n");for(i=0; 1 <n;
I++) printf("%dn", a[i]); return 0;

Correctness Proof

Theorem 1.1 Algorithm SelectionSort(a,n) correctly sorts a set of n > 1
elements; the result remains in afl : n] such that o[1] <af2] <+ < a[n].

Proof: We first note that for any i, say ¢ = ¢, following the execution of
lines 6 to 9, it is the case that alg] < a[r], ¢ < 7 < n. Also observe that
when i hecomes greater than ¢, a[l : g] is unchanged. Hence, following the
last execution of these lines (that is, i = n), we have a[l] < a[2] < -+ < aln).

We observe at this point that the upper limit of the for loop in line 4 can
be changed to n — 1 without damaging the correctness of the algorithm. O

Recursive Algorithm

e Analgorithm is said to be recursive if the same algorithm is invoked in the body.

e Analgorithm that calls itself is direct recursive.

to be indirect recursive if it calls another algorithm which in turn callsA.

These recursive mechanisms are extremely powerful, but even more importantly;

manytimes they can express an otherwise complex process very clearly.

Program 1.8: Recursive implementation of binary search

PERFORMANCE ANALYSIS

An algorithm is said to be efficient and fast, if it takes less time to execute &

consume lessmemory space

Performance is analyzed based on 2 criteria

1. Space Complexity
2. Time Complexity

Space Complexity

Analysis of space complexity of an algorithm or program is the amount of
memory itneeds to run to completion.

The space needed by a program consists of following components.

Fixed space requirements: Independent on the number and size of the programs
input and output. It include

> Instruction Space (Space needed to store the code)

> Space for simple variable

> Space for constants

e Variable space requirements: This component consists of
> Space needed by structured variable whose size depends on the particularinstance |

of the problem being solved
> Space required when a function uses recursion

e Total Space Complexity S(P) of a program is

S(P)=C+Sp(l)

Here Sp(l) is Variable space requirements of program P working on an instance I.

C is a constant representing the fixed space requirements

e Example:
1. intsum(int A[], int n)

{

int sum=0, i; for(i=0;i<n;i++)

{

Sum=sum-+A[i];return sum;

¥
k

Here Space needed for variable n =1 byteSum =1
byte

I =1 byte

Array A[i] = n byte

Total Space complexity = [n+3] byte

2. void main()

{

int X,y,z,sum; printf(“Enter 3 numbers”);

scanf(“%d%d%d”,&X,&Yy,&z);sum = X+y+z;

printf(““The sum = %d”,sum);

b
Here Space needed for variable x = 1 bytey = 1 byte

z =1 byte sum = 1 byte

Total Space complexity = 4 byte

3. sum(a,n)

{

int s=0; for(i=0;i<n;i++)
for(j=0;j<m;j++)
s=s+a[i][j];

return s;

¥

Here Space needed for variable n = 1 bytem =1
byte

s =1 bytei =1 bytej = 1 byte

Array a[i][j] = nm byte

Total Space complexity = nm+5 byte

2. Time Complexity

e The time complexity of an algorithm or a program is the amount of time it needs
to runto completion.

e T(P)=C+TP

Here C is compile time

Tp is Runtime

For calculating the time complexity, we use a method called Frequency Count ie,

countingthe number of steps

Comments — O step

Assignment statement — 1 Step
Conditional statement — 1 Step

Loop condition for ‘n’ numbers — n+1 Step
Body of the loop — n step

Return statement — 1 Step

Examples:

Qo)+ _

(

(q?(wonp ¢ C;jr;q\
(1 i
@ SL\\'Y\:— (o) — 1

’Qtﬁw([j\(_k‘é‘v’)‘}{;—‘/) SRy e
¢
1

AU‘O: (_S’(,k\{)_p O [[’3'

~

Suws C&[R wa)
3
’%MCL',\ e &D e)

,%h A S s -——)V\(m"\)

RS) Lad " Lbm %

\rvcjwn S} sl

¢

Nt 4 M4 ht pma |

2n+ Ant 2

QCthmM)

O L e ——
R R e =4

3. lterative function for summing a list of numbers

4\00\‘[\ SUN)('(.[oc:h /QAS"L [J . L\n‘t "73

3
S(or\‘\ \cm‘:Suvv):O 7

J
[n-‘\i/
®oi(ci=0 Cie iy i+1)

{Lm\:sum-r = QJJL [j:\/’

'”'\WV) kew)‘;jq ™

Tabular Method

Statement

float sum(float list[],

int n)
{

float tempsum =
O:int i;

for(i=0; i <n; i++)
tempsum +=
list[i];

return tempsum;

orFRPrPFPFOPRFkr OO

Total

s/e =steps/execution

4. Recursive summing of a list of numbers

'“Ocm\‘l wsuw;('?(so& &S{[], io'k hJ
,

(%(h) —h=+ ‘SM‘J
}

'fe;\un '\SUTN) (Lb\, v~ l) 1 &45% [V)-O)/' 2 " 5{47

'TeAu_\n 0) a S{’LQD

§
3 Ant R 5&""-5

Tabular Method

Statement Frequen
Cy

float rsum(float list[], int n)

{

if (n)

return rsum(list, n-1)+list[n-
1];return list[0];

¥

Total 2n+2

When we analyze an algorithm it depends on the input data, there are three cases :
Best case: The best case is the minimum number of steps that can be executed for the

given parameters.
Average case: The average case is the average number of steps executed on instances
with the given parameters.
Worst case: In the worst case, is the maximum number of steps that can

be executedfor the given parameters

ASYMPTOTIC NOTATION

e Complexity of an algorithm is usually a function of n.

e Behavior of this function is usually expressed in terms of one or more standard functions.

e Expressing the complexity function with reference to other known functions is called

asymptotic complexity.

e Three basic notations are used to express the asymptotic complexity

Big — Oh notation O : Upper bound of the algorithm
Big — Omega notation ©Q : Lower bound of the algorithm
Big — Theta notation ® : Average bound of the algorithm

Big — Oh notation O
Formal method of expressing the upper bound of an algorithm’s running time.
I.e. it is a measure of longest amount of time it could possibly take for an algorithm
to complete.
It is used to represent the worst case complexity.
f(n) = O(g(n)) if and only if there are two positive constants ¢ and nO such that
f(n) <cg(n) forallm>no .

e Then we say that “f(n) is big-O of g(n)”.

f{n) = O(g(n))

e« Examples:

1. Derive the Big — Oh notation for f(n) = 2n + 3Ans:
2n + 3 <= 2n+3n

2n+3 <=5n for all n>=1Herec =5

g(n) = nso, f(n) = O(n)

2. Big - Omega notation Q

e f(n)=Q(g(n)) if and only if there are two positive constants ¢ and n0 such that

f(n) > ¢ g(n) for all n > n0.

e Then we say that “f(n) is omega of g(n)”.

fin) _

~ cg(n)

fin) = alg(n))

e Examples:
Derive the Big — Omega notation for f(n) = 2n + 3Ans:

2n + 3 >=1n for all n>=1Herec=1

g(n) =nso, f(n) = Q (n)

3. Big- Theta notation @

e f(n)=0(g(n)) if and only if there are three positive constants c1, c2 and n0 such that
clg(m)<f(n)<c2g(n)foralln>no0.

e Then we say that “f(n) is theta of g(n)”.

e Examples:

Derive the Big — Theta notation for f(n) = 2n + 3Ans:

In<=2n+3<=5n for all
n>=1Herecl=1

C2=5

gl(n) and g2(n) =nso, f(n) = O (n)

Example:n2+5n+7=0(n2)

Proof: «

Whenn 21, n2% 8n+ 7 =n?+ 5n2 + 7n2 < 13n?
e When:n20,n?<n?+5n+7
e Thusywhennz1

In2<n?2+5n+7<13n2

—

Thus, we have shown that n? + 5n + 7 = @(n?) (by definition of

Big-®, withng = 1,¢cl1 =1, and c2 = 13.)

Comparison of different Algorithm

Algorithm Best case

Average case

Worst case

Quick sort O|n log n)

O(n log n)

O(n?)

Merge sort O(n log n)

O(n log n)

O(n log n)

Heap sort O(n log n)

O(n log n)

O(n log n)

Bubble =sort O(n)

O(n2)

O(n2)

Selection Sort O(n2?)

O(n2?)

O(n2?)

Insertion sort Ol(n)

O(n2)

O(n2)

Binary search 0(1)

O(log n)

O(log n)

Linear search O(1)

O(n)

O(n)

E'xam})\eé

—c Cwn) » 25 L B4 4

= 2w
B aBna & L iy B tEn

s R

B e 50 Cn—\);eéo-{),)*ﬂ JyQ%l\

= S’(nf)r\“ﬁix‘_?,. y &_2)*0’3,\)*\0

\')(fi'?(\j : ¥ e NAED XNDA - -

L)

D

= I S W\

N

2

<3 . tOC,l\.V(%&. B’a O hoch’]‘M sl ys(lq va_' 5 ,
‘F(m’) s Do lny 5

9 2 2
R N B 15T

o R

g S0 Olgw)
% i) C”’)'

= miiadill
e pteat] T ,(.'-““f:fz-~‘:5f"'{

TIME COMPLEXITY OF LINEAR SEARCH

Any algorithm is analyzed based on the unit of computation it performs. For linear

search, we need to count the number of comparisons performed, but each comparison
may or may not search the desired item.

Best Case

Worst Case

Average Case

1

1

n/?2

TIME COMPLEXITY OF BINARY SEARCH

In Binary search algorithm, the target key is examined in a sorted sequence and
thisalgorithm starts searching with the middle item of the sorted sequence.

If the middle item is the target value, then the search item is found and it returns
True.

If the target item < middle item, then search for the target value in the first halfof
the list.

If the target item > middle item, then search for the target value in the second halfof
the list.

In binary search as the list is ordered, so we can eliminate half of the values in the
list in each iteration.

Consider an example, suppose we want to search 10 in a sorted array of elements,
then we first determine 15 the middle element of the array. As the middle item
contains 18, which is greater than the target value 10, so can discard the second half of
the list and repeat the process to first half of the array. This process is repeated until
the desired target item is located in the list. If the item is found then it returns True,
otherwise False.

In Binary Search, each comparison eliminates about half of the items from the list.
Consider a list with n items, then about n/2 items will be eliminated after first
comparison. After second comparison, n/4 items of the list will be eliminated. If this

process is repeated for several times, then there will be just one item left in the list.

Thenumber of comparisons required to reach to this point is n/21 = 1. If we solve for i,

then it gives us i = log2 n. The maximum number is comparison is logarithmic in

nature, hence the time complexity of binary search is O(log n).

Best Case | Worst Case | Average Case

1 ‘ O(log n) ‘ O(log n) ‘

MODULE 2 - ARRAYS AND SEARCHING

Polynomial representation using Arrays, Sparse matrix, Stacks, Queues - Circular Queues,

Priority Queues, Double Ended Queues, Evaluation of Expressions, Linear Search and
Binary Search

DATA STRUCTURE

It is a representation of logical relationship between individual elements of data. It is also
defined as a mathematical model of particular organization of data items. It is also

called building block of a program.

Classification of data structure

[|
Linear data structures Non-linear data structures

| |
[| [l [1 I
Arrays Linked lists Stacks Queues Trees Graphs Tables Sets

Fig. 1.2 Classification of classic data structures.

1. Linear data structure

e All the elements form a sequence or maintain a linear ordering.

Front Rear

| !
= IEER =

Queue

P _F—>— K

Linked list
(a) Linear data structures

Non linear data structure

Elements are distributed over a plane.

BRE

Table
(b) Non-linear data structures

POLYNOMIAL REPRESENTATION USING ARRAYS

A polynomial is a sum of terms where each term has the form ax®

,Where x is the variable, a is the coefficient and e is the exponent.
A general polynomial A(x) can be written as
HHI” + an_lx”‘l + ...+ ﬂ]I + ﬂﬂ

where a, 7 0 and we say that the degree of 4 is n.

If the Polynomial is -10 +3x +5x? then we can write it as :

-10x° +3x} +5x2
-10x° + 3x* + 5x2

int Poly[3];
Polynomial representation using Arrays

A polynomial of a single variable A(x) can be written as
ag*+ a,X +a, X?+...+a, X" where a, #0 and degree of A(X) is n.

0 1 2 n-1

n
Poly PRI TR S R

For a polynomial of degree n, n+1 terms are required

X1=3x* + 5x%4+ 73 X2=10x° + 3x! + 552

Degree of X1 Degree of X2
is M=3 is N=2

*/dentify the value of Highest degree polynomial.
*Write polynomial X3 with degree Max(degree of X1 and degree
of X2).

X1= 31t + 5x%4 78 X2=1060 4 311 4 52 X1=3x* + 552+ 7x3 X2=10X0+ 3¢ + 552

X1= X0+ 3xL 4 5x%4+7x3 X2= X0+ 3L + 5x2+0)3 X1=0x0+ !+ 5x247x3 X2=10x0 + X + 5x2403
0 0 1 2 3§

i= 2 3 = 0 =1 2 3 0 j=1 2° 3

0= 0+10= i=j=k=0 a,= 343 = i:j:k:]_

while (i <=M) while (i <= M)
{ {
10

izittj=jrt =k
} }

Polynomial Addition Example

\ X1=3x1 + 552+ 753 X2=-10x° + 3x1 + 5x2

m X1= 0x0 + 3x1 + 5x247x3 X2=10x0 + 3x* + 5x240x3
0 1 k. 0 1 2 3 0 1 2 3

0= 5+ 5= \

X3= 100+ 6x1+ x4+ 3 X3= 10x0 + 6x1 + 10x%+ 7x3

\

Clk) -

0

Steps of Polynomial Addition

X1=7x* + 5x%+ 3x* X2=5x3 + 3x1 —§XO

i=0 =0 1 2

1 2
Coefficient 7 5 3 Coefficient 5 3 -8
Xi= X2=
Exponent 4 2 il Exponent 5 1 (0)
0

k=

Coefficient

X3=

Exponent

SPARSE MATRIX

A matrix is a two-dimensional data object made of ‘m’ rows and ‘n’ columns,
therefore having total m x n values. If most of the elements of the matrix have O
values, then it is called a sparse matrix.

Sparse matrix is a matrix which contains very few non-zero elements.

X1=T7x* + 5x%+ 3! X2=5x3 + 3x! -8x0 X1=7x* + 5x24 3 X2=5x3 + 3L -8°
=0 1 2 i= =012 '
X1 Coefficient 7 5 3 X2 Coefficient 5 3 X1= X2= Coefficient 5§
i Exponent 4 2 1 g Exponent 1 Bporent 4 21 Exporent | 3
4 >3

CASE-1

if(X1[i].expo >X2[j].expo)
If the exponent of the term point

k=0
k=0){\2 is less than the exponent of t 3 Coefficient {X3[k] coeff = X1[i]. coeff;
Coefficien i i = ') f
\3= oefficient term pointed by i of X1' , then Boner X3[K.expo = X1[il.expo;
Exponent current term of X1 pointed b T
location pointed by k in polyn

Advance the pointer i and k to }k=k+1
term.

X1=Tx® + 524 31 X2= 553 + 3x1 -8° X1=T7x* + 5x%+ 3x1 X2=5x3 + 3x* -8x°

0 =1 2 i 0 i=1 2 =0 1 2
X1 Coefficient 7 5 3 X2 Coefficient X1= Coefficent 7| 5 3 X0= Coefficent 5 3 -8
Bl coonen 0 'S I | G bponent 4 21 Eponent 31 | 0

CASE-2 if(X1[i].expo < X2[j].expo)
If the exponent of the tert {

g ; k=1 2
k=1 2 in X2 is greater than the . ., AR]
T the current term pointer y3_ [EEARE 7 g{t} coeﬁ_—x);i[i]. coeff,
X3= then copy the current Bponent 4} SalSIAUED = Sal iexpo;
Exponent 4 A 3 . j=j+1
pointed by j in the Iocat|0|‘ B
in polynomial X3. Advance k=k+1
and k to the next term.)

e When a sparse matrix is represented with a 2-dimensional array, we waste a lot of space to
represent that matrix.

e Consider a matrix of size 100 X 100 containing only 10 non-zero elements. In this
matrix, only 10 spaces are filled with non-zero values and remaining spaces of the
matrix are filledwith zero. Totally we allocate 100 X 100 X 2 = 20000 bytes of space
to store this integer matrix. To access these 10 non-zero elements we have to make
scanning for 10000 times.

Sparse Matrix Representations can be done in many ways following are two
common representations:

1. Array representation
X1=T7x* + 5x2+ 3x1 X2=5x3 + 3x1 -8x°

0 1 =
Coefficient 7 5 3 Coefficient ~ §
Exponent 4 2 i Exponent
if(X1[i].expo > X

0 1 2 k=3 {
" R
\3= Coefficient 75 X3[K]. coeff = X
Bporent 4 3 X3[k].expo = X1
i=i+l

k=k+1
X1=T7x* + 5x2+ 3x1 X2=5x3 + 3x -8x0 X1=T7x* + 5x%+ 3x1 X2=5x3+ 3x* -8x0

0 1 =2 ‘ i 0 1 j=2
X1 Coefficient /. 5) XZ Coefficient 5 X1= Coefficient X= Coefficient 5§ 38 B=8
- bporent 4 2 1 . Exponent 3 S exporent 3 1 0

If the expone if(X1[i).expo == X2(j].expo)
0 - 4 terms of polyn k=4

L i
] efficien X3{k].coeff = X1[i].coeff +
7 werenc 70 s B X2 ff_a.re : equi 3 Coefficient ol s
= coefficients are : .
Exponent 4 3 2 KW BErm 18 S X3[k].expo = X1[i].expo;

i=i+l
resultant polyr o
advance |, j ar kst
the next term.

=1

Three tuple form

Linked list representation

2D array is used to represent a sparse matrix in which there are three columns named as
Row:Index of row, where non-zero element is located

Column:Index of column, where non-zero element is located

Value:Value of the non zero element located at index —(row,column)

X2= 553+ 3x1 -8x0

X1=7x* + 5x24 3x!

0 1 =2
Coefficent 7§ 3 Coefficient 5§

X2=

Exponent 4 2 il Exponent 3

No more element in i CASE:3
If there is ng

= N le and

0 1 2 3 k e
elements remdi
Coeffcient
¥3= R 78 |ESR BN N6 copy rest of th
bporent 4 3 2 1 to X3 and ady

track to the ne

X1=Tx* + 5¢%4 3x1 X2=5x3+ 3x* -8

0 1 i=2 0 1 j=2

Coefficent 7~ 5 3 N Coefficient 5~ 3 -8
X1= " X2=
Eponent 4) 1 et 3 1
while (j <n) do

X3[k].coeff = X2(j].coeff;
X3[k].expo = X2[j].expo;
j=j+1

k=k+1

}

Coefficient 7

Exponent

Coefficient
X1=

Exponent 4

Coefficient

Exponent

X1=Tx 4 5x24 3yt X2= 553+ 3L -8x¢

01 = 01]2
Coefficent 7 5 3 Coefficient 5~ 3 -8

Eponent 4 2] Bponent 31 ()

0

k=4 N

e
Coefficient 7 S 5 -8
X3=
Bpoent 4 3 2 0

Column
2

Row

Column

Value

Triplets
(0,2,3)
(0,4,4)
(1,2,5)
(1,3,7)
(3,1,2)
(3,2,6)

Columns] Va

loo » ool
=XE=X=X=1
BWNN =0 un|E

Why to use Sparse Matrix instead of simple matrix ?

Storage: There are lesser non-zero elements than zeros and thus lesser memory

can beused to store only those elements.

° U DU U C. U [JU U C d € Sdavelu UY 10U ally Ucoiy U d Udla

structuretraversing only non-zero elements.

3. STACK

It is a linear data structure in which elements are placed one above another.

A stack is an ordered collection of homogeneous data elements where the insertion
anddeletion operations take place only at one end called Top of the stack.

LIFO - In stack elements are arranged in Last-In-First-Out manner (LIFO). So it is
alsocalled LIFO lists.

Anything added to the stack goes on the “top” of the stack.

Anything removed from the stack is taken from the “top” of the stack.

Things are removed in the reverse order from that in which they were inserted

l D |«top
C [«top C
B |<top B B
A |<top A [A A

Figure 3.1: Inserting and deleting elements in a stack

Operations of Stack

e Two basic operations of stack:
> PUSH : Insert an element at the top of stack
> POP: Delete an element from the top of stack

Last In - First Out

Data Element Data Element
Data Element Data Element ‘
|
Data Element Data Element

Data Element Data Element

Data Element Data Element ‘

Stack Stack

e Initially top is set to -1, to indicate an empty stack. (Top = -1)
e The maximum no. of elements that a stack can accommaodate is termed MAX_SIZE.

e Ifstackis full Top = MAX_SIZE -1

Array representation of stack

e Stack can be represented using a linear array.
e Thereis a pointer called TOP to indicate the top of the stack

0 12 3 4 5
bbb ccc ddd

top

e Overflow: If we try to insert a new element in the stack top (push) which is already
full,then the situation is called stack overflow.

e Underflow: If we try to delete an element (pop) from an empty stack, the situation is
calledstack underflow.

Basic Operations

e push() — Pushing (storing) an element on the stack.

e pop() — Removing (accessing) an element from the stack.
o peek() — get the top data element of the stack, without removing it.

int peek() {
return stack[top];

b
e isFull() — check if stack is full.bool

isfull() {
if (top == MAX_SIZE)

else

return false;

b
e ISEmpty() — check if stack is empty.bool

isempty() {

return true;

return false;

Push Operation

The process of putting a new data element onto stack is known as a Push Operation. Push
operation involves a series of steps —

= Step 1 — Checks if the stack is full.

= Step 2 - If the stack is full, produces an error and exit.

1 Step 3 — If the stack is not full, increments top to point next empty space.
1 Step 4 — Adds data element to the stack location, where top is pointing.

1 Step 5 — Returns success.

- \ Push Operation

top—
top——

Stack

Algorithm: PUSH()

Let A be an array with Maximum size as MAX_SIZE. Initially, top=-1

1. Start

2. iftop < MAX_SIZE—1
3. set top=top+1]

4, Set A[top]=item
5. else

POP Oper . print “OVERFLOW”

7. exit

47

A Pop operation may involve the following steps -
2 Step 1 - Checks if the stack is empty.
Step 2 - If the stack is empty, produces an error and exit.

Step 3 - If the stack is not empty, accesses the data element at which top is
pointing.

Step 4 - Decreases the value of top by 1.

Step 5 - Returns success.

E
Pop Operation /

Algorithm: POP()

Start
if top=-1then

print “UNDERFLOW”
else

set item=A[top]

Set top=top-1

exit

Applications of stack

e Reversing an array
> ABCD
> Pushing tostack ABCD

Popping from stack DC B A
Undo operations

Infix to prefix, infix to postfix conversion
Tree Traversal

Evaluation of postfix expressions

QUEUES

A queue is an ordered collection of homogeneous data elements. In which insertion is
doneat one end called REAR and deletion is done at another end called FRONT.
FIFO - In queue elements are arranged in First-In-First-Out manner (FIFO).

First inserted element is removed first

’ ! ' { rear
I ! D |« rear
{ B |+« rear J C
A | « pear i[* front | Jf— front | B |& front
« front

Figure 3.4; Inscrting and deleting elements in a queue

Two basic operations of queue:
Enqueue -> Insert an element at the rear end of queue.
Dequeue-> Delete an element from the front end of queue.

Dequeue _ ‘ 10‘ 20‘ 30‘ 40‘ 50‘«: Enqueue

front rear

Initial case rear = -1 and front = 0, MAX SIZE is the size of the queue.
If rear = front then queue contains only a single element

If rear < front then queue is empty

Queue full : rear = n-1 and front =0

Whenever an element is deleted from the queue, the value of FRONT is increased by 1.
53

i.e. FRONT=FRONT+1

Similarly, whenever an element is added to the queue, the REAR is incremented by 1 as,
REAR=REAR+1

Array Representation of Queue

A one-dimensional array, say Q[1 ... N], can be used to represent a queue. Figure 5.3 shows
an instance of such a queue. With this representation, two pointers, namely FRONT and REAR,
are used to indicate the two ends of the queue. For the insertion of the next element, the pointer
REAR will be the consultant and for deletion the pointer FRONT will be the consultant.

A
|

Front
Figure 5.3 Array representation of a queue.

Basic Operations

enqueue() — add (store) an item to the queue.
dequeue() — remove (access) an item from the queue.

peek() — Gets the element at the front of the queue without removing it.
int peek()

{

return queue[front];

¥

e isfull() — Checks if the queue is full
bool isfull()

{
If (rear == MAXSIZE - 1)

return true;

else
return false;

¥
e isempty() — Checks if the queue is empty.bool

isempty()

if(front < O || front > rear)return true;

else

return false;

Enqueue Operation

Queues maintain two data pointers, front and rear. Therefore, its operations are
comparatively difficult to implement than that of stacks.

The following steps should be taken to enqueue (insert) data into a queue -
2 Step 1 — Check if the queue is full.
1 Step 2 - If the queue is full, produce overflow error and exit.

. Step 3 - If the queue is not full, increment rear pointer to point the next empty
space.

Step 4 - Add data element to the queue location, where the rear is pointing.

Step 5 - return success.

Front

}

Algorithm : Enqueue

Start
if rear = MAX_SIZE — 1 then
print “OVERFLOW”

setrear=rear+1

Set A[rear]=item

1
2
3
4. else
5
6
7

exit

Dequeue Operation

Accessing data from the queue is a process of two tasks — access the data where front is
pointing and remove the data after access. The following steps are taken to perform
dequeue operation —

2 Step 1 — Check if the queue is empty.
Step 2 - If the queue is empty, produce underflow error and exit.
Step 3 — If the queue is not empty, access the data where front is pointing.
Step 4 - Increment front pointer to point to the next available data element.

Step 5 — Return success.

Rear Front
l |

before D

dequeue

Algorithm : Dequeue

Start
if rear < front then

print “UNDER FLOW”
else

set item = A[front}

set front = front + 1

exit

Type of Queues

> Circular Queue

> Priority Queue
> Doubly ended Queue

CIRCULAR QUEUE

To utilize space properly, circular queue is derived.
In this queue the elements are inserted in circular manner.
So that no space is wasted at all.
Circular queue empty:
FRONT=-1
REAR= -1
e Circular queue full:
(rear + 1) % max_size = Front
e Itis a modification of simple queue in which the rear pointer is set to the initial

location,whenever it reaches the location max_size — 1.

EMPTY QUEUE

T
}
|
1

Figure 3.6: Empty and nonempty circular queues

Insertion Algorithm (ENQUEUE)

if (front == -1 & rear ==-1)
set front =0 and rear =0
Set a[rear]=item
else if (front = (rear+1) % max_size) then
Print over flow
else
set rear = (rear + 1)% max_size

Set a[rear] = item

© © N o g ~ 0 N PE

Deletion Algorithm (DEQUEUE)

if front =-1 and rear = -1 then
print underflow and exit
else if front = rear
set item= a[front]
set front=-1and rear=-1
6. else

set item= a[front]

8. set front = (front + 1) % max_size
9

Exit

7. PRIORITY QUEUE

Regular queue follows a First In First Out (FIFO) order to insert and remove an
item.Whatever goes in first, comes out first.

In a priority queue, an item with the highest priority comes out first.

55

Therefore, the FIFO pattern is no longer valid.

Every item in the priority queue is associated with a priority.
It does not matter in which order we insert the items in the queue

The item with higher priority must be removed before the item with the lower priority.

If two elements have the same priority, they are served according to their order in the queue.

Operations on a priority queue

EnQueue: EnQueue operation inserts an item into the queue. The item can be
inserted at the end of the queue or at the front of the queue or at the middle. The item
must havea priority.

DeQueue: DeQueue operation removes the item with the highest priority from the

queue.

Peek: Peek operation reads the item with the highest priority.

Enqueue Operation

. IF((Front == 0)&&(Rear == N-1))
PRINT “Overflow Condition”
Else IF(Front == -1& rear ==-1)
Front = Rear =0
Queue[Rear] = Data
Priority[Rear] = Priority
ELSE IF(Rear ==N-1)

FOR (i=Front;i<=Rear;i++)
FOR(i=Front;i<=Rear;i++)
. Q[i-Front] =Q[i]
Pr[i-Front] = Pr[i]
Rear = Rear-Front
Front=0
FOR(i =r;i>f;i-)
IF(p>Pr[i])
. Q[i+1] = Q[i] Pr[i+1] = PrJi]
ELSE
Q[i+1] = data Pr[i+1] = p
Rear++.

Dequeue operation

IF(Front == -1)

PRINT “Queue Under flow condition”
ELSE

PRINT”Q[f],Pr[f]”

IF(Front==Rear)

Front = Rear = -1
ELSE
FRONT++

Applications of Priority Queue
1. CPU Scheduling

2. Graph algorithms like Dijkstra’s shortest path algorithm, Prim’s Minimum
SpanningTree, etc

3. All queue applications where priority is involved.

4. For load balancing and interrupt handling in an operating system

8. DOUBLY ENDED QUEUE

It is a list of elements in which insertion and deletion are perform at both ends

FRONT REAR

L 1}

Insertion >
- Insertion

| ==

Deletion «=—— :
Deletion

It has 4 operations
Insertion at rear end
Insertion at front end
Deletion at rear end

Deletion at front end

Algorithm : Insertion at rear end

Start

if rear = MAX_SIZE — 1 then

print “OVERFLOW”
Else

setrear=rear+1

Set A[rear]=item

exit

2. Insertion at front end

Start
if front = 0 then
print “OVERFLOW” and exit

set front = front - 1

Set A[front]=item

1
2
3
4. Else
5
6
7

exit

at front end

Start
if front =0 and rear =-1 then
print “UNDER FLOW” and exit
set item = A[front]
if front = rear then
set front=0and rear=-1
Else set front = front + 1

exit

Deletion at rear end

O N o o bk~ w Dd P

Start

if front =0 and rear = -1 then

print “UNDER FLOW” and exit

set item = A[rear]
if front = rear then

set front =0and rear =-1
Else setrear=rear-1

exit

9. CONVERSION & EVALUATION OF EXPRESSIONS

e Infix Expression: The operator occurs between the operands
<operand> <operator> <operand>

Eg: atb

o Prefix Expression (Polish notation): The operators occurs before the operand
<operator> <operand> <operand>

Eg: +ab

e Postfix Expression (Reverse Polish notation): The operators occurs after the operand

<operand> <operand> <operator>

Eg : ab+

Operator

Precedence’

Associativity

fuaction call
array element
struct or union member

17

left-to-right

increment, decrement?

left-to-right

sizeof

decremeant, increment®
logical not

one’s complement
unary minus or plus
address or indirection
size (in bytes)

right-to-left

(type)

type cast

right-to-left

* /| %

multiplicative

left-to-right

binary add or subtract

left-to-right

shift

left-to-right

relational

left-to-right

équality

left-to-right

bitwise and

left-to-right

bitwise exclusive or

left-to-right

bitwise or

left-to-right

logical and

left-to-right

logical or

left-to-right

conditional

right-to-left

assignment

NDIwlarlula|l<w|lw|w

right-to-left

left-to-right

Converk Yhoe /&b\\oc.oin(g eou/\mem\'qﬁ \‘h'\n; \xm\ /{;\"n :
5 L\')}EI\\FB % G) * H>

'/“”0\5 C'x)m\cdq [¢, 1

oo (A NS

{myoer b yec CQM L

Ff«s\ C,OV\A\'A(/L e
wi(:vumncb_ A en e %(&Hw\ Jiﬂrrd .

A\\S)*CAD%HD

(p+ (B8 ——CD‘EJ

(A+ (B*e D)

(A= Q&* e Derd | *fﬂ_})‘* H>

(Am(ec:x—DEF’\‘/G*B*H)

B % Lol w il w0 R H)
)

Ge

be % bes Nl ¥ ~H—°s¢>

///__’:’__/—//

X ([A-*B)*C—C\Q—E)>1\<F+C,\>
A - ((é\j(\z]‘ae C — (,B—E})) Pl £

— s D SALEES

(1ppii e

(peves RECHRNAEE

(42 B JACHE DE*“/\\Q:*C“>
G e

A
F ¢ o~
BB A e B0 e N \ _,C"__)

e, (NS e

ABalc = BE &= Bo s

/___/—__/ .

A. Postfix Expression Evaluation
Given P is the postfix expression, the following algorithm uses a stack to hold operands. It

finds the value of the arithmetic expression P, Written in postfix notation.

Algorithm:

Step 1: Add «) « at the end of P

Step 2: Scan P from left — right & repeat the steps 3 & 4
Step 3: If an operand occurs, PUSH it to stack.

Step 4: If an operator &occurs, then

A: Remove the top elements of the stack.

When A is the top element and B is the next top elementB: Evaluate
B& A

C: Place the result of step B back to stack

Step 5: Set the value equals to TOP element of the stack.

Evaluate the expression5* (6 +2)—-12/4Ans
: Convert to postfix notation
5*62+-12/4
562+*-124/
=562+*124/-
Add “) « at the end of P
P=562+*124/-)

Scanned Symbol

5

6

5,8

40

40,12

40,12, 4

40,3 2. Evaluatelthe expression (6+2)/(4-2*1

)
37 7
Ans: Convert to postfix notation

62+/(4-21%

62+/421%*-

62+421%-/
P=62+421%-/)

Scanned Symbol

stack which holds the left parenthesis and operators. We renthesis to stack and adding a right
parenthesis at the end of Q.

Algorithm

Step 1: PUSH left parenthesis “(“ into stack and add right parenthesis) * at the end of
Q.

Step 2: Scan the expression Q from Left — Right and repeat the step 3 to 6 for each element
of Q until this stack is empty.

Step 3: If an operand occurs add it to P.

Step 4: If a Left parenthesis occurs then PUSH it to stack

Step 5: If an operator & Oceurs then

A: Repeatedly POP the stack and add to P, each operator which has same or higher

precedence than ®

B: add & to stack
Step 6: If a Right parenthesis occurs then

A: Repeatedly POP from stack and add to P each operator until a left parenthesisoccurs.

B: Remove the left parenthesis

Step 7: Exit

1. Q=A+(B*C-(D/E~F)*G)*H

Ans : Add right parenthesis at the end of the expressionQ = A

+(B*C-(D/EAF)*G)*H)

Symbol
Scanned

AB

ABC

ABC*

ABC*

ABC*D

ABC*D

ABC*DE

ABC*DE

ABC*DEF

ABC*DEF "/

ABC*DEF "/

ABC*DEF " /G

ABC*DEF " /G * -

ABC*DEF " /G * -

ABC*DEF"/G*-H

ABC*DEF" /G * - H
* 4+

2.Q=((A+B)*C-(D-E))M(F+G)

Ans:

Q=((A+B)*C-(D-E))"(F+G))

Symbol Stack
Scanned

0

(
(

AB

AB+

AB+

AB+C

AB+C*

AB+C*

AB+C*D

AB+C*D

AB+C*DE

AB+C*DE-

AB+C*DE--

AB+C*DE--

AB+C*DE--

AB+C*DE--F

AB+C*DE--F

AB+C*DE--FG

AB+C*DE--FG+

AB+C*DE—FG+"

3.Q=(A+B)*C/D+E~F/GAns:

Q=(A+B)*C/D+E~F/G)

Symbol
Scanned

A

AB

AB+

AB+

AB+C

AB+C*

AB+C*D

AB+C*D/

AB+C*D/E

AB+C*D/E

AB+C*D/EF

AB+C*D/EF?

AB+C*D/EF”G

AB+C*D/EF G/+

LINEAR SEARCH AND BINARY SEARCH

Linear search: Small & unsorted arrays
Binary search : Large arrays & sorted arrays
1. Linear Sgprch
It means looking at each element of the array, in turn, until you find the target value.
Algorithm

. Start

. Read the ITEM to be searched

. Set flag=0

if Ali]==ITEM
print “item
flag=1
. Ifflag==

print “item not

In the best case, the target value is in the first element of the array. So the search
takessome tiny, and constant, amount of time. Computer scientists denote this O(1) In
reallife, we don’t care about the best case, because it so rarely actually happens.

In the worst case, the target value is in the last element of the array. So the search
takesan amount of time proportional to the length of the array. Computer scientists
denote this O(n)

In the average case, the target value is somewhere in the array. So on average, the

target value will be in the middle of the array. So the search takes an amount of time

proportional to half the length of the array — also proportional to the length of the array
70

— O(n) againBinary Search

e The general term for a smart search through sorted data is a binary search.

The initial search region is the whole array.

Look at the data value in the middle of the search region.

If you’ve found your target, stop.

If your target is less than the middle data value, the new search region is the lower
half of the data.

If your target is greater than the middle data value, the new search region is the
higher half of the data.
Continue from Step 2.

Module 3 Linked List and Memory Management

Self Referential Structures, Dynamic Memory Allocation, Singly Linked List-Operations on
Linked List. Doubly Linked List, Circular Linked List, Stacks and Queues using Linked List,
Polynomial representation using Linked List Memory allocation and de-allocation-First-fit,
Best-fit and Worst-fit allocation schemes

Self-Referential structures are those structures that have one or morepointers which point
to the same type of structure, as their member.

Self Referential Structures

struct node {
int dataf;
char data2;

struct node* link;

I
In other words, structures pointing to the same type of structures are self-referential in nature.

Example: struct node
{

int datal;

char data2;

struct node* link;

}

int main()

{

struct node ob;return O;

}

In the above example ‘link’ is a pointer to a structure of type ‘node’. Hence, the structure
‘node’ is a self-referential structure with ‘link’ as thereferencing pointer.

An important point to consider is that the pointer should be initializedproperly before
accessing,

72

https://www.geeksforgeeks.org/structures-c/

as by default it contains garbage value.

Types of Self Referential Structures
1 Self Referential Structure with Single Link

2 Self Referential Structure with Multiple Links

Self Referential Structure with Single Link: These structures can have only one self-
pointer as their member. The following example will showus how to connect the
objects of a self-referential structure with the singlelink and access the corresponding
data members. The connection formed is shown in the following figure.

|10|20|—|—>|30|40|x|
[o]

b1 ob2

Self Referential Structure with Multiple Links: Self referential structures with multiple
links can have more than one self-pointers. Manycomplicated data structures can be
easily constructed using these structures. Such structures can easily connect to more
than one nodes at a time. The following example shows one such structure with more
than one links.

The connections made in the above example can be understood using thefollowing figure.

R
—

struct node {int data;

struct node* prev_link;struct node*
next_link;

};

Since C is a structured language, it has some fixed rules for programming. One of it
includes changing the size of an array. An arrayis collection of items stored at
continuous memory locations.

55 B3 17

1 2 8 | <-Arraylindices

Array Length=9
First Index=0
Last Index=8

As it can be seen that the length (size) of the array above made is 9. Butwhat if there is a
requirement to change this length (size). For Example,

1. If there is a situation where only 5 elements are needed to be enteredin this array. In
this case, the remaining 4 indices are just wasting memory in this array. So there is a
requirement to lessen the length (size) of the array from 9 to 5.

Take another situation. In this, there is an array of 9 elements withall 9 indices
filled. But there is a need to enter 3 more elements inthis array. In this case 3
indices more are required. So the length (size) of the array needs to be changed
from 9 to 12.

This procedure is referred to as Dynamic Memory Allocation in C.

C Dynamic Memory Allocation can be defined as a procedure in whichthe size of a data
structure (like Array) is changed during the runtime.

C provides some functions to achieve these tasks. There are 4 library functions provided by
C defined under <stdlib.h> header file to facilitatedynamic memory allocation in C
programming. They are:

(@ malloc()
(b) calloc()
(c) free()

(d) realloc()

malloc() method

“malloc” or “memory allocation” method in C is used to dynamicallyallocate a single
large block of memory with the specified size. It returnsa pointer of type void which
can be cast into a pointer of any form. It initializes each block with default garbage
value.

Syntax:
ptr = (cast-type*) malloc(byte-size)

For Example:
ptr = (int*) malloc(100 * sizeof(int));

Since the size of int is 4 bytes, this statement will allocate 400 bytes of
memory. And, the pointer ptr holds the address of the first byte in the

Malloc()

int* ptr = (int*) malloc (5* sizeof (int)

!
v

«— 20 bytes of memory —»

#include <stdio.h> #include
<stdlib.h>

int main()

{

Il This pointer will hold the

I/ base address of the block createdint™® ptr;

intn,i;

/I Get the number of elements for the arrayn = 5;

printf("Enter number of elements: %d\n", n);

I/l Dynamically allocate memory using malloc()ptr =
(int*)malloc(n * sizeof(int));

Il Check if the memory has been successfully

/1 allocated by malloc or notif (ptr ==
NULL) {

printf("Memory not allocated.\n");exit(0);
by

else {

/I Memory has been successfully allocated printf(*Memory successfully
allocated using malloc.\n");

Il Get the elements of the arrayfor (i=0;i<n;
++i) {
ptrfi] =i+ 1;

}

// Print the elements of the array printf("The elements of
the array are: ");for (i=0; i <n; ++i) {

printf("%d, ", ptr[i]);
}
}

return O;

}

“calloc” or “contiguous allocation” method in C is used to dynamically allocate the
specified number of blocks of memory of the specified type. It initializes each block
with a default value ‘0’.

Syntax:
ptr = (cast-type*)calloc(n, element-size);

For Example:
ptr = (float*) calloc(25, sizeof(float));

This statement allocates contiguous space in memory for 25 elements
each with the size of the float.

Calloc()

ER— { Y ¢
\

int* ptr = (int*) calloc (5, sizeof (int')),'
:

v

pr=[T 1 [11—

- dbhe
20 bytes of memory

#include <stdio.h> #include
<stdlib.h>

int main()

{

Il This pointer will hold the
// base address of the block createdint™® ptr;

intn,i;

/I Get the number of elements for the arrayn = 5;

printf("Enter number of elements: %d\n", n);

// Dynamically allocate memory using calloc()ptr =
(int*)calloc(n, sizeof(int));

Il Check if the memory has been successfully

/1 allocated by calloc or notif (ptr ==
NULL) {

printf(*Memory not allocated.\n");
exit(0);
h

else {

Il Memory has been successfully allocated printf("Memory successfully
allocated using calloc.\n");

Il Get the elements of the arrayfor (i=0;i<n;

++i) {
ptri] =1+ 1;
}

Il Print the elements of the array printf(*'The elements of
the array are: ");for (i=0; i <n; ++i) {

printf("%d, ", ptr[i]);
}
}

return O;

}

“free” method in C is used to dynamically de-allocate the memory. Thememory allocated
using functions malloc() and calloc() is not de- allocated on their own. Hence the

78

free() method is used, whenever the dynamic memory allocation takes place. It helps
to reduce wastage of memory by freeing it.

Syntax:
free(ptr);

Free()

int* ptr = (int*) calloc (5, sizeof (in

pr=[[[[[|~

«—— 20bytes of memory ——»

}

operation on ptr
free(ptr)

Example:

#include <stdio.h> #include

<stdlib.h>int main()

Il This pointer will hold the

// base address of the block createdint *ptr, *ptrl;

intn,i;

/I Get the number of elements for the arrayn = 5;

printf("Enter number of elements: %d\n", n);

/l Dynamically allocate memory using malloc()

ptr = (int*)malloc(n * sizeof(int));

I/l Dynamically allocate memory using calloc()ptrl =

(int*)calloc(n, sizeof(int));

Il Check if the memory has been successfully

/ allocated by malloc or not

if (ptr == NULL || ptrl == NULL) {
printf(*Memory not allocated.\n");exit(0);

}

else {

/I Memory has been successfully allocated printf(*Memory successfully

allocated using malloc.\n");

Il Free the memoryfree(ptr);

printf(*Malloc Memory successfully freed.\n");

Il Memory has been successfully allocated printf("\nMemory successfully

allocated using calloc.\n");

/] Free the memoryfree(ptrl);

printf(*"Calloc Memory successfully freed.\n");

}

return O;

}

“realloc” or “re-allocation” method in C is used to dynamically change the memory
allocation of a previously allocated memory. In other words,if the memory previously
allocated with the help of malloc or calloc is insufficient, realloc can be used to
dynamically re-allocate memory. re-allocation of memory maintains the already
present value and new blockswill be initialized with default garbage value.

Syntax:
ptr = realloc(ptr, newSize);

wvithhAavAa kv ifa vAaAllacarAA ikl o nAV A A R CioAl

Realloc()

int* ptr = (int*) malloc (5* sizeof (int));

L —

+— 20 bytes of memory —

}
ptr = realloc (ptr, 10* sizeof(int));
: s
o S S

40 bytes of memory ——————+

If space is insufficient, allocation fails and returns a NULL pointer.#include <stdio.h>

#include <stdlib.h>

int main()

{

Il This pointer will hold the

// base address of the block createdint™ ptr;

intn,i;

/I Get the number of elements for the arrayn = 5;

printf("Enter number of elements: %d\n", n);

I/l Dynamically allocate memory using calloc()ptr =

(int*)calloc(n, sizeof(int));

Il Check if the memory has been successfully

/1 allocated by malloc or notif (ptr ==

NULL) {

printf("Memory not allocated.\n");exit(0);

}

else {

/I Memory has been successfully allocated printf(*Memory successfully

allocated using calloc.\n");

Il Get the elements of the arrayfor (i=0; i <n;

++i) {

ptr[i] =1+ 1,

// Print the elements of the array printf(*The elements of

the array are: ");for (i=0; i <n; ++i) {

printf("%d, ", ptr[i]);

/I Get the new size for the arrayn = 10;

printf("\n\nEnter the new size of the array: %d\n", n);

I/l Dynamically re-allocate memory using realloc()ptr = realloc(ptr, n

* sizeof(int));

/l Memory has been successfully allocated

printf("Memory successfully re-allocated using realloc.\n");

Il Get the new elements of the arrayfor (i =5; i <n;

++i) {

ptr[i] =i+ 1;

// Print the elements of the array printf(*The elements of

the array are: ");for (i=0; i <n; ++i) {

printf("%d, ", ptr[i]);

free(ptr);

LINKED LISTS

A linked list, in simple terms, is a linear collection of data elements.These data
elements are called nodes.

Linked list is a data structure which in turn can be used to implementother data
structures.

Figure 6.1 Simple linked list

In Fig, we can see a linked list in which every node contains twoparts, an integer and
a pointer to the next node.

The left part of the node which contains data may include a simple data type, an
array, or a structure.

The right part of the node contains a pointer to the next node (or address of the next
node in sequence).

The last node will have no next node connected to it, so it will store a special value
called NULL. In Fig, the NULL pointer is represented by X.

While programming, we usually define NULL as —1. Hence, a NULL pointer denotes
the end of the list.

Linked lists contain a pointer variable START that stores the address of the first
node in the list,

We can traverse the entire list using START which contains theaddress of the first
node; the next part of the first node in turn stores the address of its succeeding

node.
Using this technique, the individual nodes of the list will form achain of nodes.
If START = NULL, then the linked list is empty and contains nonodes.
In C, we can implement a linked list using the following code:struct node

{

int data;

struct node *next;

I
Let us see how a linked list is maintained in the memory.

(a) Inorder to form a linked list, we need a structure called node
which has two fields, DATA and NEXT.

(b) DATA will store the information part and NEXT will store theaddress of the
next node in sequence. Consider Fig. 6.2.

(c) Inthe figure, we can see that the variable START is used to store the address
of the first node. Here, in this example, START= 1, so the first data is stored at
address 1, which is H.

(d) The corresponding NEXT stores the address of the next node, which is 4. So, we
will look at address 4 to fetch the next data item.

(e) The second data element obtained from address 4 is E.

(f) Again, we see the corresponding NEXT to go to the next node. From
the entry in the NEXT, we get the next address, that is 7, and fetch L as the data.

() We repeat this procedure until we reach a position where the NEXT entry
contains —1 or NULL, as this would denote the endof the linked list.

L
L

OONOWVEWNER

K
0

O —1

Figure 6_2 sTarT pointing to the first element

Linked list have many advantages. Some of the very importantadvantages are:

Linked Lists are dynamic data structure: That is, they cangrow or shrink

during the execution of a program.

Efficient memory utilization: Here, memory is not pre- allocated. Memory is

allocated whenever it is required. Andit is deallocated when it is no longer

needed.

Insertion and deletions are easier and efficient: Linked lists provide
flexibility in inserting data item at a specified position and deletion of a data

item from the given position.

Many complex applications can be easily carried out withlinked lists.

More Memory: If the numbers of fields are more, thenmore memory
space is needed.

Access to an arbitrary data item is little bit cumbersome andalso time
consuming.

Types of Linked List

Following are the various flavours of linked list.

Simple Linked List — Item Navigation is forward only.
Doubly Linked List — Items can be navigated forward andbackward way.

Circular Linked List — Last item contains link of the firstelement as next and
and first element has link to last element as prev.

Basic Operations
» Insertion —add an element at the beginning of the list.
Display — displaying complete list.

Search — search an element using given key.
Delete — delete an element using given key

SINGLY LINKED Lists

(h) A singly linked list is the simplest type of linked list in which every node
contains some data and a pointer to the next node ofthe same data type.

(i) A singly linked list allows traversal of data only in one way. Figure 6.7 shows a
singly linked list

AT TR T e T

Figure 6.7 Singly linked list

LINKED LIST OPERATIONS
Traversing a Linked List

(j) Traversing a linked list means accessing the nodes of the list in order to
perform some processing on them.

(k) a linked list always contains a pointer variable START which stores the
address of the first node of the list. End of the list is marked by storing NULL or
—1in the NEXT field of the last node.

(1) For traversing the linked list, we also make use of another pointer
variable PTR which points to the node that is currentlybeing accessed.

(m) The algorithm to traverse a linked list is shown in Fig. 6.8.

Step 1: [INITIALIZE] SET PTR = START
Step 2: Repeat Steps 3 and 4 while PTR != NULL
Step 3: Apply Process to PTR —DATA
S5tep 4: SET PTR = PTR — NEXT

[END OF LOOP]
Step 5: EXIT

Figure 6.8 Algorithm for traversing a linked list

(n) In this algorithm, we first initialize PTR with the address of START. So now,
PTR points to the first node of the linked list.

(i) Then in Step 2, a while loop is executed which is repeated tillPTR processes
the last node, that is until it encounters NULL.

(ii) In Step 3, we apply the process (e.g., print) to the current node,that is, the node
pointed by PTR.

(o) In Step 4, we move to the next node by making the PTR

variable point to the node whose address is storedin the NEXT field.

Searching for a Value in a Linked List

1: [INITIALIZE] SET PTR = START
2: Repeat Step 3 while PTR = NULL
3: IF vaAL = PTR—DATA
SET POS = PTR
Go To Step S
ELSE
SET PTR = PTR —/— MEXT
[END OF IF]
[END OF LOOP]
Step 4: SET POS = MNULL
Step 5: EXIT

Figure 6.10 Algorithm to search a linked list

Consider the linked list shown in Fig. 6.11. If we have VAL = 4,then the flow of
the algorithm can be explained as shown in thefigure.

2] =7 F—={=] F—=|a] F—{2] =] F—{s[x]
PTR
Here PTR —> DATA = 1. Since PTR —> DATA != 4, we move to the next node.

2] F—lz [F—=z] F—la] 2] F—{s | F—{5[x]

PTR

Here PTR —> DATA 7. Since PTR —> DATA != 4, we move to the next node.

[A=z A= F—|a] 2] e | F—{5[x]
PTR
Here PTR —> DATA = 3. Since PTR —> DATA != 4, we move to the next node.

(2] 7] =] sl F—l2] F+—>e] F—is]x

Here PTR —> DATA = 4. Since PTR —> DATA = 4, POS = PTR. POS now stores
the address of the node that contains WAL

Figure 6.11 Searching a linked list

Steps to create a linked list

Step 1: Include alloc.h Header
File#include<alloc.h>

1. We don“t know, how many nodes user is going to createonce he execute the
program.

2. Inthis case we are going to allocate memory usingDynamic Memory

Allocation functions malloc.

3. Dynamic memory allocation functions are included inalloc.h
Step 2 : Define Node Structure
We are now defining the new global node which can beaccessible through any of the

function.

struct node

{ int data;

struct node *next;

}*start=NULL;

Step 3 : Create Node using Dynamic Memory Allocation .Now weare creating one node
dynamically using malloc function.We don“thave prior knowledge about number of
nodes , so we are calling malloc function to create node at run time.

new_node=(struct node *)malloc(sizeof(struct node));

Fill Information in newly Created Node ,Now we are accepting value from the user using
scanf. Accepted Integer value is stored inthe data field. Whenever we create new node
, Make its Next Field

http://www.c4learn.com/dynamic-memory-allocation-malloc-calloc.html
http://www.c4learn.com/dynamic-memory-allocation-malloc-calloc.html
http://www.c4learn.com/dynamic-memory-allocation-malloc-calloc.html

as NULL. printf("Enter the data : "'); scanf("%d",&new_node-
>data);

Step 4 : if(start==NULL) then new_node -> next = NULL;start = new_node;

otherwise ptr=start; while(ptr->next!=NULL)

ptr=ptr->next;

ptr->next = new_node; new_node-

>next=NULL;

step 5:continue this process till while(hum!=-1)
Inserting a New Node in a Linked List
(p) Case 1: The new node is inserted at the beginning.

(q) Case 2: The new node is inserted at the end.

(r) Case 3: The new node is inserted after a given node.

CASE 1: Inserting a Node at the Beginning of a Linked List

(s) Consider the linked list shown in Fig. 6.12. Suppose we want toadd a new node
with data 9 and

(t) add it as the first node of the list. Then the following changeswill be done in
the linked list.

1

START
Allocate memory for the new node and initialize its DATA part to 9.

9

Add the new node as the first node of the list by making the NEXT part of the new
node contain the address of START.

> 7 > 3 >

START

Figure 6.12 Inserting an element at the beginning of a linked list

Step 1: IF AVATL = MNULL

Write OWERFLOW

Go to Step 7

[END OF IF]

Step 2: SET NEW MNODE = AVATL
Step 3: SET AVATL = AVATL — MNMEXT
Step 4: SET NEW MNODE —— DATA = WAL
Step 5: SET MNEW MODE — MEXT = START
Step 6: SET START = MNEW_MNODE
Step 7: EXIT

Figure 6.13 Algorithm to insert a new node at
the beginning

(u) In Step 1, we first check whether memory is available for thenew node. If the
free memory has exhausted, then an OVERFLOW message is printed.

(v) Otherwise, if a free memory cell is available, then we allocatespace for the
new node.

(w) Setits DATA part with the given VAL and the next part is initialized with the
address of the first node of the list, which isstored in START.

(x) Now, since the new node is added as the first node of the list, it will now be
known as the START node, that is, the START pointer variable will now hold
the address of the NEW_NODE.

Note the following two steps:
(y) Step2: SET NEW_NODE = AVAIL
(z) Step 3: SET AVAIL = AVAIL -> NEXT

(aa) These steps allocate memory for the new node.

Program

node *insert_beg(node *start)

{

node *new_node;int num;

printf(*'\n Enter the data : '*);scanf(*'%d"’,

&num);

new_node = (node *)malloc(sizeof(node));new_node -> data

= num;

new_node -> next = start;start =
new_node;
return start;

}
CASE 2: Inserting a Node at the End of a Linked List

1

START

Allocate memory for the new node and initialize its DATA part to 9 and

NEXT part to NULL.

pointer variable PTR which points to START.

.
-

7

.
¥ o

3

> 4 »> 2

START, PTR

Move PTR so that it points to the last node of the list.

2 g7 [g e gz e o

START

5| x|
PTR

Add the new node after the node pointed by PTR. This is done by storing the address
of the new node in the NEXT part of PTR.

START

Figure 6.14

NEN e H e OE RO =S D eI

Inserting an element at the end of a linked list

(bb) Suppose we want to add a new node with data 9 as the last node ofthe list. Then the
following changes will be done in the linked list.

1. In Step 6, we take a pointer variable PTR and initialize it withSTART. That is, PTR
now points to the first node of the linkedlist.

Az IF AWATL = MNULL
Wr-ite OWERFLOW
Go to Step 10
[END OF IF]
2: SET MEW _MNODE = AWATL
3z SET AWATL = AWVATL —= NEXT
I SET MNMEW MNODE — =DATAS = WAl
S5z SET MNMEW MNODE — = MNEXT = MULL
[S SET PTR = START
F:r: Repeat Step 8 while PTR — = MNEXT != MNULL
8z SET PTR = PTR —= NEXT
[END OF LOOP]
9: SET PTR —= NEXT = HNEW__MNODE
N EXIT

6.15 Algorithm to insert a new node at the end

96

2. Inthe while loop, we traverse through the linked list to reachthe last node.

2 Once we reach the last node, in Step 9, we change the NEXT pointerof the last node to
store the address of the new node.

program
struct node *insert_end(struct node *start)

{

struct node *ptr, *new_node;int num;

printf("\n Enter the data : ");scanf(*"%d",
&num);

new_node = (node *)malloc(sizeof(node));new_node -> data
= num;

new_node -> next = NULL;ptr = start;
while(ptr -> next '= NULL)ptr = ptr -> next;
ptr -> next = new_node;return start;

¥
3 CASE 3: Inserting a Node After a Given Node in a Linked List

(cc) Consider the linked list shown in Fig. 6.17. Suppose we want to adda new node with
value 9 after the node containing data 3

: IF AVAIL = MULL
Write OVERFLOW
Go to S5tep 12
[END OF IF]
S5tep : SET MNEW_MNODE = AWATL
Step D SET AVAIL = AVAIL — = NEXT
S5tep : 5ET MEW_ NODE — = DATA = WAL
S5tep : SET PTR = START
S5tep : SET PREFTR = PTR
Step : Repeat Steps 8 and 9 while PREPTR — = DATA
1= MNLUM
S5tep : SET PREPTR = PTR
S5tep : SET PTR = PTR — = NEXT
[END OF LOOP]
Step 10: PREPTR —=NEXT = MNEW_MNODE
Step 11: SET MEW_MODE — = NEXT = PTR
S5tep 12: EXIT

Figure 6.16 Algorithm to insert a new node after a node
that has value NUM

(dd) In Step 5, we take a pointer variable PTR and initialize it withSTART. That is,
PTR now points to the first node of the linked list.

(ee) Then we take another pointer variable PREPTR which will be usedto store the
address of the node preceding PTR.

(ff) Initially, PREPTR is initialized to PTR.
(gg) Sonow, PTR,PREPTR, and START are all pointing to the first nodeof the linked list.

(hh) In the while loop, we traverse through the linked list to reach thenode that has its
value equal to NUM.

(ii) We need to reach this node because the new node will be insertedafter this node.

(jj) Once we reach this node, in Steps 10 and 11, we change the NEXT pointers in such a
way that new node is inserted after the desired node.

1 L. L. k- - - -
Ean Eanl Ea Eal r L

START
Allocate memory for the new node and initialize its DATA part to 9.

9

Take two pointer variables PTR and PREPTR and initialize them with START
so that START, PTR, and PREPTR point to the first node of the list.

1 > 7 > 3 = 4 = 2 > O > 5

START

PTR
PREPTR
Move PTR and PREPTR until the DATA part of PREPTR = value of the node
after which insertion has to be done. PREPTR will always point to the
node just before PTR.

1 > 7 >

1 > 3 4

START PREPTR PTR
Add the new node in between the nodes pointed by PREPTR and PTR.

1 > 7 > 3 4 > 2 > & >

k

PREPTR

Y

Program

node *insert_after(node *start)

{

node *new_node, *ptr, *preptr;int num, val;

printf("\n Enter the data : ");scanf(*"%d",

&num);

printf(*\n Enter the value after which the data has to be inserted : ");scanf(""%d", &val);

new_node = (node *)malloc(sizeof(node));new_node -> data

= num;
ptr = start; preptr = ptr;

while(preptr -> data !=val)
{

preptr = ptr;

ptr = ptr -> next;

¥

preptr -> next=new_node;new_node ->

next = ptr; return start;

¥
Deleting a Node from a Linked List

(kk) We will consider three cases and then see how deletion is done ineach case.

() Case 1: The first node is deleted.

(mm) Case 2: The last node is deleted.

(nn) Case 3: The node after a given node is deleted.

CASE 1:Deleting the First Node from a Linked List

(oo) Before we describe the algorithms in all these three cases, let usfirst discuss an
important term called UNDERFLOW.

(pp) Underflow is a condition that occurs when we try to delete a nodefrom a linked list
that is empty.

(gq) This happens when START = NULL or when there are no morenodes to delete.

(rr) Note that when we delete a node from a linked list, we actually haveto free the
memory occupied by that node.

(ss) The memory is returned to the free pool so that it can be used to store other programs
and data. Whatever be the case of deletion, wealways change the AVAIL pointer so
that it points to the address that has been recently vacated.

1 > > >

START
Make START to point to the next node in sequence.

7 > 3 > 4 > 2

START

Figure 6.20 Deleting the first node of a linked list

1: IF START = NULL
Write UNDERFLOW
Go to Step S
[END OF IF]
Step 2: SET PTR = START
Step 3: SET START = START — NEXT
Step 4: FREE PTR
Step S: EXIT

Figure 6_21 Algorithm to delete the first
node

(tt) If START = NULL, then it signifies that there are no nodes in thelist and the
control is transferred to the last statement of the algorithm.

(uu) if there are nodes in the linked list, then we use a pointer variablePTR that is set to
point to the first node of the list.

(vv) For this, we initialize PTR with START that stores the address ofthe first node of
the list.

(ww) In Step 3, START is made to point to the next node in sequence and finally
the memory occupied by the node pointed by PTR (initially the first node of the list)
is freed and returned to the freepool.

Program

struct node *delete_beg(node *start)

{

struct node *ptr;ptr = start;

start = start -> next;

free(ptr); return start;

}
CASEZ2: Deleting the Last Node from a Linked List

(xx) Consider the linked list shown in Fig. 6.22. Suppose we want to delete the last node
from the linked list, then the following changeswill be done in the linked list.

1

START
Take pointer variables PTR and PREPTR which initially point to

1 > 7 > 3 > 4 > 2 > 6

START
PREPTR
PTR
Move PTR and PREPTR such that NEXT part of PTR = NULL. PREPTR always points
to the node just before the node pointed by PTR.

1 > 7 » 3 > 4 » 2 > B > 5

START PREPTR PTR
Set the NEXT part of PREPTR node to NULL.

1 > 7 = 3 = 4 -

START

Figure 6.22 Deleting the last node of a linked list

(yy) Figure 6.23 shows the algorithm to delete the last node from a linked list. In Step 2, we
take a pointer variable PTR and initialize it with START.

(zz) That is, PTR now points to the first node of the linked list. In the while loop, we take
another pointer variable PREPTR such that it always points to one node before the
PTR.

(aaa) Once we reach the last node and the second last node, we set the NEXT
pointer of the second last node to NULL, so that it now becomes the (new) last node
of the linked list.

(bbb) The memory of the previous last node is freed and returned back tothe
free pool

: IF START = NULL
Write UNDERFLOW
Go to Step 8
[END OF IF]
Step 2: SET PTR = START
Step 3: Repeat Steps 4 and 5 while PTR — NEXT != NULL
Step 4: SET PREPTR = PTR
Step 5: SET PTR = PTR—> NEXT
[END OF LOOP]
Step 6: SET PREPTR — NEXT = NULL
Step 7: FREE PTR
Step 8: EXIT

Figure 6.23 Algorithm to delete the last node

Program

node *delete_end(node *start)

{
node *ptr, *preptr;ptr =

start;

while(ptr -> next = NULL)

{
preptr = ptr;

ptr = ptr -> next;

Ypreptr -> next = NULL ;free(ptr);

return start; }
CASE 3:Deleting the Node After a Given Node in a Linked List

(ccc) In Step 2, we take a pointer variable PTR and initialize it withSTART. That is,
PTR now points to the first node of the linked list.

(ddd) In the while loop, we take another pointer variable PREPTR suchthat it
always points to one node before the PTR.

(eee) Once we reach the node containing VAL and the node

(fff) succeeding it, we set the next pointer of the node containing VAL tothe address
contained in next field of the node succeeding it.

(ggg) The memory of the node succeeding the given node is freed andreturned
back to the free pool.

: IF START = MNULL
Write UNDERF LOAW
Go to Step 10
[END OF IF]
: SET PTR = 5START
: SET PREPTR = PTR
: Repeat Steps 5 and 6 while PREPTR —— DATA = NUM
SET PREPTR = PTR
: SET PTR = PTR — MNEXT
[END OF LOoOOP]
: SET TEMP = PTR
: SET PREPTR — MEXT = PTR —/— MEXT
FREE TEMP
O: EXIT

Step
Step
Step
Step
Step

Step
Step
Step
Step

FOMSY OVkWN

Figure 6.25 Algorithim to delete the node after a given node

(hhh) Consider the linked list shown in Fig. 6.24.

(iii) Suppose we want to delete the node that succeeds the node which contains data value
4. Then the following changes will be done in the linked list

(2] g7 == Tg—=l2] F—=>2] F—>le] |5 [x]

START
Take pointer wariables PTR and PREPTR which initially point to START.

(2] F—=l72] | T2 F—={2] 4>l] {5 [x]

START
PREPTR
PTR

Mowve PREPTR and PTR such that PREPTR points to the node containing VAL
and PTR points to the succeeding node.

|1|—|—>1?|—|—>+3|—|—>+4|—|—>+2|—|—>+6|—|—>+5|*|

START PREPTR PT

|1|—|—>4?|—|—>13|—|—>14|—|—>12|—|—>16|—|—>15|X|

START PREPTR PTR

(2] F—= 7 =] =] G2 F—s| =15 [x]
START PREPTR PTR
Set the NEXT part of PREPTR to the NEXT part of PTR.

. (2 Izl e F—=la]] [2] | Iilﬁ—HSIXI

START PREPTR PTR
Program

(2] G 7 Tl F—>la] F—ls] s x]

START

node *delete

{

node *ptr, *preptr;int val;

“Figure 6.24 Deleting the node after a given node in a linked list

printf("\n Enter the value after which the node has to deleted : ");

scanf("%d", &val);ptr =

start;

preptr = ptr;

while(preptr -> data !=val)
{

preptr = ptr;

ptr = ptr -> next;

b

preptr -> next=ptr -> next;free(ptr);

return start;

}

CIRCULAR LINKED LISTs
(jij) In acircular linked list, the last node contains a pointer to the firstnode of the list.

(kkk) We can have a circular singly linked list as well as a circulardoubly
linked list.

(1) While traversing a circular linked list, we can begin at any node and traverse the list
in any direction, forward or backward, until wereach the same node where we started.

(mmm) Thus, a circular linked list has no beginning and no ending. Figure

6.26 shows a circular linked list.

Figure 6.26 Circular linked list

Inserting a New Node in a Circular Linked List

(nnn) Case 1. The new node is inserted at the beginning of the circularlinked
list.

(000) Case 2: The new node is inserted at the end of the circular linkedlist.
CASE 1:Inserting a Node at the Beginning of a Circular LinkedList

(ppp) Consider the linked list shown in Fig. 6.29. Suppose we want to adda new
node with data 9 as the first node of the list.

Step 1: IF AVATL = MNULL
Write OWERFLOW
Go to Step 11
[END OF IF]
Step 2: SET NEW _MNODE = AWVATL
Step 3: SET AVATL = AWVATL — MNEXT
Step 4: SET NEW MNODE — DATA = VAL
Step 5: SET PTR = START
Step 6: Repeat Step 7 while PTR — MEXT != START
Step 7: PTR = PTR — NEXT
[END OF LOOP]
Step 8: SET NEW _MNODE —— NEXT = START
Step 9: SET PTR — NEXT = MNEW_MNODE
Step 10: SET START = MNEW_MNODE
Step 11: EXIT

Figure 6.30 Algorithm to insert a new node at the beginning

(iii) Figure 6.30 shows the algorithm to insert a new node at thebeginning of a linked
list. In Step 1, we first check whether memory

Is available for the new node. If the free memory has exhausted, then an OVERFLOW
message is printed.

(iv) Otherwise, if free memory cell is available, then we allocate space for the new node.

(v) Set its DATA part with the given VAL and the NEXT part is initialized with the
address of the first node of the list, which is stored in START.

(vi) Now, since the new node is added as the first node of the list, it willnow be known as
the START node,that is, the START pointer variable will now hold the address of the
NEW_NODE.

(vii) While inserting a node in a circular linked list, we have to use a while loop to
traverse to the last node of the list.

(viii) Because the last node contains a pointer to START, its NEXT fieldis updated so that
after insertion it points to the new node which willbe now known as START

\l|+'+?|4—"|3|+*|“\4—42\4—45\4—’45|||
START A
Allocate memory for the new node and initialize its DATA part to 9.

(o]]

Take a pointer wvariable PTR that points to the START node of the list.
|1|+>1?|4+|3|4+|4|%%2|%%6|+~15| |
START, £ PTR

Move PTR so that it now points to the last node of the list.
|l|+>|?|4+|3|4+14|%+12|+—|6|%+|5|||
starT 4 PTR
Add the new node in between PTR and START.

|9|—H1|4+|?|4+13|%*44|4ﬂ4?—|+>|6| 4+|5|||

START PTR

Make START point to the new node.

ol ola]l ozl el glel Szl gle] gis [

START

Figure 6.29 Inserting a new node at the beginning of a circular linked list

Program insert new node at beginning

struct node *insert_beg(struct node *start)

{

struct node *new_node, *ptr;int num;

printf("\n Enter the data : ");
scanf("%d", &num);

new_node = (struct node *)malloc(sizeof(struct node));new_node ->
data = num;

ptr = start;

while(ptr -> next = start)ptr = ptr -
> next;

ptr -> next = new_node; new_node
-> next = start;start =
new_node;

return start;

¥
CASE 2: Inserting a Node at the End of a Circular Linked List

1

sTART A
Allocate memory for the new node and initialize its DATA part to 9.

9
Take a pointer wvariable PTR which will initially point to START.

1 = 7 > 3 > 4 > 2 > 6 > 5
START, A PTR
Move PTR so that it now points to the last node of the list.

1 = 7 = 3 > 4 > 2 > 6 = 5
START A
Add the new node after the node pointed by PTR.

1 = 7 = 3 > 4 = 2 -

START A

Figure 6.31 Inserting a new node at the end of a circular linked list

Step 1: IF AVAIL = NULL
Write OVERFLOW
Go to Step 10
[END OF IF]
Step 2: SET NEW_NODE = AVAIL
Step 3: SET AVAIL = AVAIL — NEXT
Step 4: SET NEW_ _MNODE — DATA = VAL
Step 5: SET NEW_MNODE —= MNEXT = START
Step 6: SET PTR = START
Step 7: Repeat Step B8 while PTR—NEXT != START
Step 8B: SET PTR = PTR —/= NEXT
[END OF LOOP]
S5tep 9: SET PTR —NEXT = NEW_ NODE
Step 10: EXIT

Figure 6.32 Algorithm to insert a new node at the end

(qqq) Figure 6.32 shows the algorithm to insert a new node at the end of acircular
linked list.

(rrr) In Step 6, we take a pointer variable PTR and initialize it withSTART.

(sss) That is, PTR now points to the first node of the linked list.

(ttt) Inthe while loop, we traverse through the linked list to reach the lastnode.

(uuu) Once we reach the last node, in Step 9, we change the NEXT pointerof the last
node to store the address of the new node.

(vwv)Remember that the NEXT field of the new node contains the addressof the first node
which is denoted by START.

Program

struct node *insert_end(struct node *start)

{

struct node *ptr, *new_node;int num;

printf("\n Enter the data : ");
scanf("%d", &num);

new_node = (struct node *)malloc(sizeof(struct node));new_node ->
data = num;

ptr = start;

while(ptr -> next = start)ptr = ptr -
> next;

ptr -> next = new_node; new_node
-> next = start;return start; }

Deleting a Node from a Circular Linked List

(www) Case 1: The first node is deleted.

(xxx)Case 2: The last node is deleted.

CASE 1: Deleting the First Node from a Circular Linked List

1

START 4
Take a variable PTR and make it point to the START node of the list.

1 > 7 > 3 > 4 > 2 » 6 > 5
START,A PTR

Move PTR further so that it now points to the last node of the list.

1 7 > 3 > 4 » 2 » 6 » 5
START A PTR

The NEXT part of PTR is made to point to the second node of the list
and the memory of the first node is freed. The second node becomes
the first node of the list.

7 3

START A

Figure 6.33 Deleting the first node from a circular linked list

(yyy) In Step 1 of the algorithm, we check if the linked list exists or not. If START
= NULL, then it signifies that there are no nodes in the list and the control is
transferred to the last statement of the algorithm.

(zzz) However, if there are nodes in the linked list, then we use a pointer variable PTR
which will be used to traverse the list to ultimately reach the last node.

(aaaa) In Step 5, we change the next pointer of the last node to point to thesecond
node of the circular linked list.

(bbbb) In Step 6, the memory occupied by the first node is freed.

(ccec) Finally, in Step 7, the second node now becomes the first node of the list and
its address is stored in the pointer variable START.

IF START = NULL
Write UNDERFLOW
Go to S5tep 8
[END OF IF]
Step 2: SET PTR = START
Step 3: Repeat Step 4 while PTR — NEXT != START
Step 4: SET PTR = PTR — NEXT
[END OF LOOP]
Step 5: SET PTR —= NEXT = START —= NEXT
Step 6: FREE START
Step 7: SET START = PTR — NEXT
Step 8: EXIT

Figure 6.34 Algorithm to delete the first node

Program

struct node *delete_beg(struct node *start)

{

struct node *ptr;
ptr = start;

while(ptr -> next != start)ptr = ptr -

> next;
ptr -> next = start -> next;

free(start);

start = ptr -> next;return
start;

CASE 2: Deleting the Last Node from a Circular Linked List

1 r g

START A
Take two pointers PREPTR and PTR which will initially point to START.

b 5

1 7 3 4 2

START +
PREPTR
PTR
Move PTR so that it points to the last node of the list. PREPTR will

always point to the node preceding PTR.

2 ™ b > 5
PREPTR PTR

> 3 > 4 >

1 > 7

START A
Make the PREPTR's next part store START node's address and free the

space allocated for PTR. Now PREPTR is the last node of the list.

> b
PREPTR

1
START A

Figure 6.35 Deleting the last node from a circular linked list

In Step 2, we take a pointer variable PTR and initialize it withSTART.

(dddd)

That is,PTR now points to the first node of the linked list.

(eeee)
116

(ffff) In the while loop, we take another pointer variable PREPTR such that PREPTR
always points to one node before PTR.

(gggg) Once we reach the last node and the second last node, we set the next pointer
of the second last node to START, so that it now becomes the (new) last node of the

linked list.

(hhhh) The memory of the previous last node is freed and returned to the free pool.

program

Step
Step
Step
Step

Step
Step
Step

» IF START = NULL

Write UNDERFLOW
Go to Step 8
[END OF IF]

: SET PTR = START
: Repeat Steps 4 and 5 while PTR—> NEXT != START

SET PREPTR = PTR
SET PTR = PTR —> NEXT
[END OF LOOP]

: SET PREPTR —>NEXT = START
: FREE PTR
» EXIT

Figure 6.36 Algorithm fo delete the last node

program

struct node *delete_end(struct node *start)

{

struct node *ptr, *preptr;ptr = start;
while(ptr -> next 1= start)

{

preptr = ptr;

ptr = ptr -> next;

}

preptr -> next = ptr -> neXt;free(ptr);

return start; }

DOUBLY LINKED LISTS

(iiii) A doubly linked list or a two-way linked list is a more complex type of linked list
which contains a pointer to the next as well asthe previous node in the sequence.

(ijii) Therefore, it consists of three parts—data, a pointer to the nextnode,
and a pointer to the previous node .

>

i
-«

> X |1

Figure 6.37 Doubly linked list

1 C. the structure of a doubly linked list can be given as,

struct node

{

struct node *prev;
int data;
struct node *next;

(kkkk) The PREYV field of the first node and the NEXT field of the last node will
contain NULL.

() The PREV field is used to store the address of the preceding node, which enables us
to traverse the list in the backward direction.

(mmmm) Thus, we see that a doubly linked list calls for more space per nodeand more
expensive basic operations.

(nnnn) However, a doubly linked list provides the ease to manipulate the elements
of the list as it maintains pointers to nodes in both the directions (forward and
backward).

(0000) The main advantage of using a doubly linked list is that it makes searching
twice as efficient.

Inserting a New Node in a Doubly Linked List

(ppPP) Case 1: The new node is inserted at the beginning.
(aqqq) Case 2: The new node is inserted at the end.
(rrrr)Case 3: The new node is inserted after a given node.

CASE 1: Inserting a Node at the Beginning of a Doubly LinkedL.ist

X |1 {"’ 7 P 3 {"' 4 {“' 2| x

START
Allocate memory for the new node and initialize its DATA part to 9 and PREV field to NULL.

X9

Add the new node before the START node. Now the new node becomes the first node of
the list.

X9
START

L. - i
> o >

) .
> >

1 7 3 4 2

- > - -
- - -« -

Figure 6.39 Inserting a new node at the beginning of a doubly linked list

(ssss) In Step 1, we first check whether memory is available for the new node.

(tttt) If the free memory has exhausted, then an OVERFLOW message is printed.

(uuuu) Otherwise, if free memory cell is available, then we allocate space for the
new node.

(vvwv) Set its DATA part with the given VAL and the NEXT part is initialized with
the address of the first node of the list, which is stored in START.

(wwww) Now, since the new node is added as the first node of the list, it willnow be
known as the START node, that is, the START pointer variable will now hold the
address of NEW_NODE.

IF AvATL = MNULL
Write OWERF LOW
Go to Step 9
[END OF TIF]
Step 2: SET MNEW _NODE = AWVATL
Step 3: SET AVAIL = AVATL — MNEXT
Step 4: SET MNEW_MNODE —/— DATA = WAL
Step 5: SET MNEW_MNODE — PREW = MNULL
Step &6: SET MNEW_MNODE — NMEXT = S5TART
Step 7: S5ET START — PREW = MNEW_MODE
Step 8: SET START = MNEW_MODE
Step 9: EXIT

Figure 6.40 Algorithm to insert a new node at
the beginning

program

struct node *insert_beg(struct node *start)

{

struct node *new_node;

int num;

printf("\n Enter the data : ");
scanf("%d", &num);

new_node = (struct node *)malloc(sizeof(struct node));new_node ->

data = num;
start -> prev = new_node;
new_node -> next = start;

new_node -> prev = NULL;start =
new_node;

return start;

}

CASE 2: Inserting a Node at the End end of a Doubly Linked List

.
X1 -« <
-« 3

L .
> -

il il
« -

START
Allocate memory for the new
NEXT field to NULL.

X

pointer variable PTR

node and initialize its DATA part to 9 and its

and make it point to the first node of the list.

e

L. .

:
) ? -4
T T

> 3 > 4 > 2 | x

START,PTR

Move PTR so that it points to the last node of the list. Add the new node after the

node pointed by PTR.

-

L. k. . L.
Cai - - >

X1 ~ 7

_—a il
- -

— - _—a
- £ -

START

Figure 6.41 [nserting a new node at the end of a doubly linked list

(xxx) Figure 6.42 shows the algorithm to insert a new node at the end of adoubly
linked list. In Step 6, we take a pointer variable PTR and initialize it with START.

(yyyy) In the while loop, we traverse through the linked list to reach the last
node.

(zzzz) Once we reach the last node, in Step 9, we change the NEXT pointerof the last
node to store the address of the new node. Remember thatthe NEXT field of the

(aaaaa) new node contains NULL which signifies the end of the linked list.

(bbbbb) The PREV field of the NEW_NODE will be set so that it points to the node
pointed by PTR (now the second last node of the list).

Step 1: IF AVAIL = NULL
Write OVERFLOW

Go to S5tep 11

[END OF IF]
S5tep 2: S5ET NEW _NODE = AWVAIL
S5tep 3: SET AVAIL = AVATL — NEXT
5tep 4: S5ET MEW NODE — DATA = VAL
5tep 5: S5ET MEW _MNODE —= MEXT = MNULL
5tep 6: S5ET PTR = START
Step 7: Repeat Step 8B while PTR —=MNEXT != NULL
Step 8B: SET PTR = PTR — NEXT

[END OF LOOP]
S5tep 9: SET PTR —/—= MNEXT = NEW_NODE
5tep 10: 5T MWEW MNODE —/— PREV = PTR
S5tep 11: EXIT

Figure 6.42 Algorithm to insert a new node at the end

Program

struct node *insert_end(struct node *start)

{

struct node *ptr, *new_node;int num;

printf("\n Enter the data : ");
scanf("%d", &num);

new_node = (struct node *)malloc(sizeof(struct node));new_node ->
data = num;

ptr=start;

while(ptr -> next != NULL)ptr = ptr ->
next,

ptr -> next = new_node; new_node ->
prev = ptr; new_node -> next =
NULL;return start;

Inserting a Node After a Given Node in a Doubly Linked List

1: IF AWVATL = MNULL
Write OWVERFLOW
Go to Step 12
[END OF IF]
Step 2: SET MEW_MNODE = AWVATIL
Step 3: SET AVAIL = AVATIL —/— NEXT
Step 4: SET MNMEW_MNODE —/— DATA = WAL
Step S5: SET PTR = START
Step 6: Repeat Step 7 while PTR —DATA = MNUM
Step 7: SET PTR = PTR —= MEXT
[END OF LOOP]
Step 8: SET MEW_MNODE —/— NEXT = PTR — NEXT
Step 9: SET MEW_MNODE — PREW = PTR
Step 10: SET PTR — MEXT = MNEW_ MNODE
Step 11: SET PTR ——= NEXT — PREW = HNEW_MNODE
Step 12: EXIT

Figure 6.43 Algorithm to insert a new node after a given node

Figure 6.43 shows the algorithm to insert a new node after a given nodein a doubly
linked list.

In Step 5, we take a pointer PTR and initialize it with START. That is, PTR now points to
the first node of the linked list. In the while loop, we traverse through the linked list to
reach the node that has its value equal to NUM.

We need to reach this node because the new node will be inserted after this node. Once
we reach this node, we change the NEXT and PREV fields in such a way that the new
node is inserted after the desired node.

X |1

-

>
-4 il
- *«

. -
> >

-4 il

- -

START

Allocate memory for the new

9

Take a

pointer variable PTR

node and initialize its DATA part to 9.

and make it point to the first node of the list.

X |1

.

k. .

>
- 7
<

> 3 > a > 2| x

START,PTR

Move PTR further until the data part of PTR = value after which the
node has to be inserted.

X |1

-
-« 7
«

X |1

a3
-+

START

Figure 6.44

Program

Inserting a new node after a given node in a doubly linked list

struct node *insert_after(struct node *start)

{

struct node *new_node, *ptr;int num,
val;

printf("\n Enter the data : ");
scanf("%d", &num);

printf(*\n Enter the value after which the data has to be inserted : ");scanf("%d", &val);

new_node = (struct node *)malloc(sizeof(struct node));new_node ->
data = num;

ptr = start;

while(ptr -> data != val)ptr = ptr -
> next; new_node -> prev =
ptr;

new_node -> next = ptr -> next;ptr -> next
-> prev = new_node; ptr -> next =
new_node;

return start;

¥
Deleting a Node from a Doubly Linked List

(ccceec) Case 1: The first node is deleted.

(ddddd) Case 2: The last node is deleted.

(eeeee) Case 3: The node after a given node is deleted.

CASE 1: Deleting the First Node from a Doubly Linked List

(FFFfF) When we want to delete a node from the beginning of the list, thenthe
following changes will be done in the linked list.

EJENE>=< 1 EN I >=< BN EN I >=< B K2 i >=< I £

START

P« ENES

Free the memory occupied by the first node of the list and make the second node of the
list as the START node.

ESEN =<1 BNl >=< I ki i >=< B Y i >=<IN E EY

START

Figure 6.47 Deleting the first node from a doubly linked list

1: IF START = MNULL
Write UNDERF LOW
Go to Step S
[END OF IF]

Step 2: SET PTR = START
Step 32: SET START = 5START —— MNMEXT
Step 4: SET START — PREW = MNMULL
S5tep 5: FREE PTR
Step &: EXIT

Figure 6.48 Algorthm to delete the first node

(gegeg) Figure 6.48 shows the algorithm to delete the first node of a doubly linked
list.

(hhhhh) In Step 1 of the algorithm, we check if the linked list exists or not. If
START =NULL, then it signifies that there are no nodes in the listand the control is
transferred to the last statement of the algorithm.

the list.

(kkkkk) In Step 3, START is made to point to the next node in sequence andfinally
the memory occupied by PTR (initially the first node of the list) is freed and returned
to the free pool.

Program

struct node *delete_beg(struct node *start)

{

struct node *ptr;ptr =
start;

start = start -> next;

start -> prev = NULL;free(ptr);

return start;

¥

CASE 2: Deleting the Last Node from a Doubly Linked List

(1) Suppose we want to delete the last node from the linked list, thenthe following
changes will be done in the linked list.

>
X111 p P < <
- -+ - o

START
Take a pointer variable PTR that points to the first node of the list.

X |1 {}" 3 _1,."“' 5 {"‘" 7 ___\,}' 8

START,PTR
Move PTR so that it now points to the last node of the list.

X |1 __{} 3 {"’ 5 > 7 {} 9

START PTR
Free the space occupied by the node pointed by PTR and store NULL in NEXT field of
its preceding node.

.
y

X |1 —

o
.

START

Figure 6.49 Deleting the last node from a doubly linked list

-4 ITF START = MULL
Write UMNDERF LOW
Go to Step T
[END OF IF]
Step 2: SET PTR = START
Step 3: Repeat Step 4 while PTR — NEXT =
Step 4 : SET PTR = PTR —MNEXT
[END OF LOooPT
Step 5: SET PTR —/— PREW —— MNEXT = MNULL
Step &: FREE PTR
Step 7 EXTITT

Figure 6_50 Algorithm to delete the last node

(mmmmm) Figure 6.50 shows the algorithm to delete the last node of a doublylinked
list.

(nnnnn) In Step 2, we take a pointer variable PTR and initialize it with START.

(00000) That is, PTR now points to the first node of the linked list. The while loop
traverses through the list to reach the last node.

(pPPPP) Once we reach the last node, we can also access the second last nodeby taking
its address from the PREYV field of the last node.

(gqqqq) To delete the last node, we simply have to set the next field of second last node
to NULL, so that it now becomes the (new) last node of the linked list.

(rrrrr) The memory of the previous last node is freed and returned to the free pool.
Program

struct node *delete_end(struct node *start)

{

struct node *ptr;ptr =
start;

while(ptr -> next != NULL)ptr = ptr ->
next,

ptr -> prev -> next = NULL;free(ptr);

return start;

}

CASE 3 : Deleting the Node After a Given Node in a Doubly Linked List

START,PTR

Move PTR further so that its data part is equal to the value after which the node has
to be inserted.

> > > >
x 1 - i i
- X X

START
Delete the node succeeding PTR.

X1 {"’ 3 {"’

START

X1

START

Figure 6.51 Deleting the node after a given node in a doubly linked list

1: IF START = NULL
Write UNMDERFLOW
Go to Step 9
[END OF IF]
Step 2: SET PTR = START
Step 3I: Repeat Step 4 while PTR — DATA 1= MNUM
Step 4: SET PTR = PTR —/— MNEXT
[ENMD OF LOOP]
Step S5: SET TEMP = PTR — MNEXT
Step 6: SET PTR —NMNEXT = TEMP — MNEXT
Step F: SET TEMP —/— MNMEXT — PREW = PTR
Step 8: FREE TEMP
Step 9: EXIT

Figure 6.52 Algorithm to delete a node after a given node

In Step 2, we take a pointer variable PTR and initialize it with
130

START. That is, PTR now points to the first node of the doubly linked list. The while
loop traverses through the linked list to reach the given node.

(sssss) Once we reach the node containing VAL, the node

(ttttt) succeeding it can be easily accessed by using the address stored in its NEXT
field. The NEXT field of the given node is set to contain the contents in the NEXT
field of the succeeding node.

(uuuuu) Finally, the memory of the node succeeding the given node is freedand
returned to the free pool.

Program

struct node *delete_after(struct node *start)

{

struct node *ptr, *temp;int val;

printf("\n Enter the value after which the node has to deleted : ");scanf("%d", &val);

ptr = start;

while(ptr -> data != val)ptr = ptr -
> next;

temp = ptr -> next;

ptr -> next = temp -> next; temp ->
next -> prev = ptr;free(temp);

return start;

}

Header Linked Lists

(vwvwv) A header linked list is a special type of linked list which contains a header
node at the beginning of the list. So, in a header linked list, START will not point to
the first node of the list but START will contain the address of the header node.

(wwwww) The following are the two variants of a header linked list:

(xxxxx) Grounded header linked list which stores NULL in the next field ofthe last
node.

(yyyyy) Circular header linked list which stores the address of the header node in
the next field of the last node. Here, the header node will denote the end of the list.

Look at Fig. 6.65 which shows both the types of header linked lists.

Header node

k.
-

START

Header node

.
-~

A START

Figure 6.65 Header linked list

Application of linked list-Polynomial

Linked list are widely used to represent and manipulate polynomials. Polynomials
are the expressions containing number of terms with nonzero coefficient and
exponents.In the linked representation of polynomials, each term is considered as
a node.And such a node contains three fields

http://www.ktustudents.in/
http://www.ktustudents.in/
http://www.ktustudents.in/
http://www.ktustudents.in/
http://www.ktustudents.in/
http://www.ktustudents.in/
http://www.ktustudents.in/

» Coefficient field
. Exponent field

e Link field
The coefficient field holds the value of the coefficient of aterm and the exponent

field contains the exponent value of the term. And the link field contains the
address of the next term inthe polynomial. The polynomial node structure is

- Address of
Coefficient(coeff) Exponent(expo) the

next
node(n
ext)

Two polynomials can be added. And the steps involved inadding two
polynomials are given below

Read the number of terms in the first polynomial P

Read the coefficient and exponent of the first polynomial
Read the number of terms in the second polynomial Q

Read the coefficient and exponent of the secondpolynomial

Set the temporary pointers p and g to travers the twopolynomials
respectively

Compare the exponents of two polynomials starting fromthe first nodes

1. If both exponents are equal then add the coefficientand store it in the
resultant linked list

2. If the exponent of the current term in the first polynomial P is less than the
exponent of the current term of the second polynomial then added the second
term to the resultant linked list. And, move the pointerq to point to the next node

in the second polynomial Q.

If the exponent of the current term in the first polynomial P is greater than the
exponent of the current term in the second polynomial Q, then the current term
of the first polynomial is added to the resultant linked list. And move the pointer

p to the next node.

. Append the remaining nodes of either of the polynomials to the resultant
linked list.

Let us illustrate the way the two polynomials are added. Let p and gbe two polynomials
having three terms each.

P=3x2+2x+7 Q=5x3+2x?+x

These two polynomial can be represented as

http://www.ktustudents.in/
http://www.ktustudents.in/
http://www.ktustudents.in/
http://www.ktustudents.in/
http://www.ktustudents.in/
http://www.ktustudents.in/

Step 1. Compare the exponent of p and the corresponding

exponent of g. Here,

expo(p)<expo(q)

So, add the terms pointed to by g to the resultant list. And nowadvance the g
pointer.

Step 2.

Compare the exponent of the current terms. Here,

expo(p)=expo(q)
So, add the coefficients of these two terms and link this to theresultant list. And,

advance the pointers p and g to their next nodes.

Compare the exponents of the current terms again

expo(p)=expo(q)

So, add the coefficients of these two terms and link this tothe resultant linked list.
And, advance the pointers to their nextnodes. Q reaches the NULL and p

points the last node.

[

There is no node in the second polynomial to compare with.So, the last node in the

first polynomial is added to the end of theresultant linked list.

Step 5. Display the resultant linked list. The resultant linkedlist is pointed to by the
pointer R

[=]

Read the number of terms in the first polynomial

Read the coefficient and exponent of the first polynomial
Read the number of terms in the second polynomial

Read the coefficient and exponent of the secondpolynomial

if one of the list is empty then the nonempty linked list isadded to the resultant

linked list Otherwise goto step 6.

for each term of the first list

multiply each term of the second linked listwith a term of the first linked list
add the new term to the resultant polynomial

reposition the pointer to the starting of thesecond linked list

go to the next node

adds a term to the polynomial in thedescending order of the

exponent
7. Display the resultant linked list
Linked list implementation of stack

Instead of using array, we can also use linked list to implement stack. Linked list
allocates the memory dynamically. However, time complexity in both the scenario
is same for all the operations i.e. push,pop and peek.

In linked list implementation of stack, the nodes are maintained non- contiguously in
the memory. Each node contains a pointer to its immediate successor node in the

stack. Stack is said to be overflown ifthe space left in the memory heap is not
enough to create a node.

top —> NodeData X

—

Node Data Next

Node Data Next

—

Node Data Next

Stack

The top most node in the stack always contains null in its address field. Lets discuss the way
in which, each operation is performed in linked listimplementation of stack.

Adding a node to the stack (Push operation)

Adding a node to the stack is referred to as push operation. Pushing an element to a
stack in linked list implementation is different from that ofan array implementation.
In order to push an element onto the stack, thefollowing steps are involved.

(a) Create a node first and allocate memory to it.

(b) If the list is empty then the item is to be pushed as the start node ofthe list. This
includes assigning value to the data part of the node and assign null to the address
part of the node.

(c) |If there are some nodes in the list already, then we have to add the new element in
the beginning of the list (to not violate the propertyof the stack). For this purpose,
assign the address of the starting element to the address field of the new node and
make the new node, the starting node of the list.

Time Complexity : o(1)

C implementation :
void push ()

{

int val;

struct node *ptr =(struct node*)malloc(sizeof(struct node));if(ptr == NULL)

{

printf("not able to push the element");

}

else

{

printf("Enter the value");scanf("%d",&val);
if(head==NULL)

{

ptr->val = val,

ptr -> next = NULL;head=ptr;
¥

else

{

ptr->val = val; ptr->next = head;
head=ptr;

}
printf("ltem pushed");

}
}

Deleting a node from the stack (POP operation)
136

Deleting a node from the top of stack is referred to

as pop operation. Deleting a node from the linked list

Implementation of stack is different from that in the array implementation. In order to
pop an element from the stack, weneed to follow the following steps :

« Check for the underflow condition: The underflow condition occurs when we
try to pop from an already emptystack. The stack will be empty if the head pointer
of the listpoints to null.

« Adjust the head pointer accordingly: In stack, the elementsare popped only from
one end, therefore, the value stored in the head pointer must be deleted and the node
must be freed. The next node of the head node now becomes the head node.

Time Complexity : o(n)

C implementation
void pop()

{

int item;

struct node *ptr;

if (head == NULL)
{
printf("Underflow");

}

else

{

item = head->val;ptr = head;

head = head->next;free(ptr);

printf("1tem popped");

Display the nodes (Traversing)

Displaying all the nodes of a stack needs traversing all the nodes ofthe linked list organized
in the form of stack. For this purpose, we need to follow the following steps.

« Copy the head pointer into a temporary pointer.

« Move the temporary pointer through all the nodes of the listand print the value
field attached to every node.

Time Complexity : o(n)
C Implementation

void display()

{

inti;

struct node *ptr;ptr=head;
If(ptr == NULL)

{

printf("Stack is empty\n");
}

else

{
printf("Printing Stack elements \n");while(ptr'=NULL)

{
printf("%d\n",ptr->val);ptr = ptr->next;

Linked List implementation of Queue

Due to the drawbacks discussed in the previous section of this tutorial, the array
implementation cannot be used for the large scale applicationswhere the queues are
implemented. One of the alternative of array implementation is linked list
implementation of queue.

The storage requirement of linked representation of a queue with nelements is o(n)
while the time requirement for operations is o(1).

In a linked queue, each node of the queue consists of two parts i.e. data part and the link
part. Each element of the queue points to its immediatenext element in the memory.

In the linked queue, there are two pointers maintained in the memory i.e.front pointer and
rear pointer. The front pointer contains the address of the starting element of the queue
while the rear pointer contains the address of the last element of the queue.

Insertion and deletions are performed at rear and front end respectively.If front and rear
both are NULL, it indicates that the queue is empty.

The linked representation of queue is shown in the following figure.

L

Linked Queue

Operation on Linked Queue

There are two basic operations which can be implemented on the linkedqueues. The
operations are Insertion and Deletion.

Insert operation

The insert operation append the queue by adding an element to the endof the queue. The
new element will be the last element of the queue.

Firstly, allocate the memory for the new node ptr by using the followingstatement.

Ptr = (struct node *) malloc (sizeof(struct node));
There can be the two scenario of inserting this new node ptr into thelinked queue.

In the first scenario, we insert element into an empty queue. In this case,the condition
front = NULL becomes true. Now, the new element will be added as the only
element of the queue and the next pointer of front and rear pointer both, will point to
NULL.

ptr -> data = item; if(front ==
NULL)

{
front = ptr;rear = ptr;

front -> next = NULL ;rear -> next =
NULL;

In the second case, the queue contains more than one element. The condition front =
NULL becomes false. In this scenario, we need to update the end pointer rear so
that the next pointer of rear will point tothe new node ptr. Since, this is a linked
queue, hence we also need to make the rear pointer point to the newly added node
ptr. We also needto make the next pointer of rear point to NULL.

rear -> next = ptr;rear = ptr;

rear->next = NULL,

In this way, the element is inserted into the queue. The algorithm and theC
implementation is given as follows.

Algorithm
1. Step 1: Allocate the space for the new node PTR
2. Step2: SETPTR ->DATA =VAL

3. Step 3: IF FRONT = NULL SET FRONT
=REAR =PTR

SET FRONT -> NEXT = REAR -> NEXT = NULLELSE

SET REAR -> NEXT = PTRSET REAR =
PTR

SET REAR -> NEXT = NULL[END OF IF]
4, Step4: END

C Function

void insert(struct node *ptr, int item;)

{

ptr = (struct node *) malloc (sizeof(struct node));if(ptr ==
NULL)

{
printf("\nOVERFLOWA\n"); return;

}

else

{

ptr -> data = item;if(front ==
NULL)

{

front = ptr;rear = ptr;

front -> next = NULL;

rear -> next = NULL;

rear -> next = ptr;rear = ptr;

rear->next = NULL,;

Deletion

Deletion operation removes the element that is first inserted among all the queue
elements. Firstly, we need to check either the list is empty ornot. The condition

front == NULL becomes true if the list is empty, inthis case , we simply write
underflow on the console and make exit.

Otherwise, we will delete the element that is pointed by the pointer front. For this
purpose, copy the node pointed by the front pointer intothe pointer ptr. Now, shift
the front pointer, point to its next node and free the node pointed by the node ptr.
This is done by using the following statements.

ptr = front;

front = front -> next;free(ptr);
The algorithm and C function is given as follows.

Algorithm

5. Step 1: IF FRONT = NULLWrite "
Underflow "

Go to Step 5 [END OF IF]
6. Step 2: SET PTR = FRONT

7. Step 3: SET FRONT = FRONT -> NEXT
8. Step 4: FREE PTR
9. Step5: END

C Function

void delete (struct node *ptr)

{

if(front == NULL)

{

printf("\nUNDERFLOW\n"); return;

}

else

{
ptr = front;

front = front -> next;free(ptr);

¥
¥

Memory management

Basic task of any program is to manipulate data.These data shouldbe stored in memory
during their manipulation. There are two memory management schemes for the
storage allocations of data:

Static storage management
Dynamic storage management

Static storage management In case of static storage management scheme,the net
amount of memory required for various data for a program is allocated before the
starting of the execution of the program.Once memory is allocated, it neither can be
extended nor can be returned to the memory bank for the use of other programs at the
same time.

Dynamic storage management

Dynamic storage management scheme allows the user to allocate and
deallocate as per the necessity during the execution of programs.

This dynamic memory management scheme is suitable in multiprogramming as
well as single-user environment where generallymore than one program reside in
the memory and their memory requirement can be known only during their
execution.

Operating systems (OS) generally provides the service of dynamic memory
management. The data structure for implementing such a scheme is linkedlist.

Various principles on which the dynamic memory management scheme isbased on

Allocation schemes: here we discuss how a request for a memory block will be
serviced.

Fixed block allocation
Variable block allocation.
First fit and its variant, (ii) Next fit, (iii) Best fit, (iv) Worst fit

Deallocation schemes: here we discuss how to return a memory block to the
memory bank whenever it is no more required.

Random deallocation
Ordered deallocation.

Garbage collection: to maintain a memory bank so that it can be utilized
efficiently.

2. Allocation schemes

« Memory bank or pool of free storages is often a collection of non-
contiguous blocks of memory.

Their linearity can be maintained by means of pointers between one blockto
another or in other words, memory bank is a linked list where links are to maintain
the adjacency of blocks.

Each node is of fixed size

Regarding the size of the blocks there are two practices: fixed block storageand
variable block storage. Let us discuss each of them individually.

2.1 Fixed Block Storage:

Here each block is of the same size.
« Thesize is determined by the system manager (user).

Here, the memory manager (a program of OS) maintains a pointer

AVAIL which points a list of non-contiguous memory blocks.

A user program communicates with the memory manager by meansof
two functions GETNODE(NODE) and RETURNNODE(ptr)

Procedure GETNODE(NODE)
Steps
. Start

. If (AVAIL = NULL) then

Print ""The memory is insufficient"

. Else

ptr = AVAIL
AVAIL = AVAIL->LINK

Return(ptr)
. EndIf
« Stop

Whenever a memory block is no more required, it can be returned tothe memory
bank through a procedure RETURNNODE()

Procedure RETURNNODE(PTR)

Steps

Start

ptrl = AVAIL

While (ptrl->LINK # NULL) doptrl = ptrl-
>LINK

EndWhile
ptri1->LINK=PTR
ptr->LINK= NULL
Stop

Fixed block allocation is the simplest strategy. But the main drawbackof this

strategy is the wastage of space.

For example, suppose each memory block is of size 1 K (1024 bytes);now for a

request of memory block, say, of size 1.1 K we have to avail2 blocks (that is 2 K

memory space) thus wasting 0.9 K memory space.

Variable Block Storage

Here, the memory manager (a program of OS) maintains a pointerAVAIL which
points a list of non-contiguous memory blocks.

149

« To overcome the disadvantages of fixed block storage, we can maintainblocks of

variable sizes, instead of fixed size blocks.

Procedure GETNODE(NODE)

Steps
Start
If (AVAIL = NULL) then
Print ""Memory bank is insufficient"
Exit
Endif
ptr = AVAIL
While (ptr->LINK #NULL) and (ptr->SIZE < SIZEOF(NODE))do
ptrl = ptr
ptr = ptr->LINK
EndWhile
If (ptr->LINK = NULL) and (ptr->SIZE < SIZEOF(NODE))then
Print ""Memory request is too large: Unable to
Else
ptrl->LINK = ptr->LINK
. Return(ptr)
EndIf10.Stop

This procedure assumes that blocks of memory are stored in ascending orderof their
sizes.

. Procedure RETURNNODE(PTR)
Steps

Start

ptrl = AVAIL

While (ptrl->SIZE < ptr->SIZE) and (ptrl->LINK # NULL)) do
ptr2 = ptrl

ptrl = ptrl->LINK

EndWhile

ptr2->LINK = PTR

PTR->LINK = ptrl

* Stop

The dynamic memory management system should provide thefollowing

Services:

0 Searching the memory for a block of requested size and servicingthe request

(allocation)

Handling a free block when it is returned to the memory manager.

0 Coalescing the smaller free blocks into larger block(s) (garbagecollection and
compaction).

Storage allocation strategies

(a) First-fit allocation, (b) Best-fit allocation, (c) Worst-fitallocation, (d) Next-fit
allocation

First-fit storage allocation:
This is the simplest storage allocation strategy.
. Here the list of available storages will be searched and as soon as afree

storage block of size N will be found pointer of that block will besent to the calling

program after retaining the residue space.

For example, for a block of size 2 K, if the first-fit strategy found a

block of 7 K, then after retaining a storage block of size 5 K, 2 K memory will be

sent to the caller.

Leads to fast allocation of memory space.

Leads to memory waste

Best-fit storage allocation

This strategy will not allocate a block of size > N, as it is found in first-fit method,
instead will continue searching to find a suitable block so that the block size is closer
to the block size of request.

Goal: find the smallest memory block into which the job will fit

Results in least wasted space.

Slower in making allocation

For example, for a request of 2 K, if the list contains the blocks of sizes,1 K, 3 K, 7 K,
2.5 K, 5 K, then it will find the block of size 2.5 K as suitable block for allocation.

From this block after retaining 0.5 K, pointer for 2 K block will be returned.
Worst-fit storage allocation
Slower in making allocation
Allocates the largest free available block to the new job
Opposite of best-fit

Best-fit finds a block which is small and nearest to the block size as 'requested,
whereas, worst-fit strategy is a reverse of it. It allocates thelargest block available in the
available storage list.

The idea behind the worst-fit is to reduce the rate of production of smallblocks which
are quite common when best-fit strategy is used for memory allocation.

Next-fit storage allocation

The idea behind the worst-fit is to reduce the rate of production of small

blocks which are quite common when best-fit strategy is used formemory allocation.

Next-fit allocation strategy is a modification of first-fit strategy.

Starts searching from last allocated block, for the next available block when a new

job arrives.

In case of first-fit strategy, searching will always occur from beginning of the free list
whereas in next-fit strategy, search begins where the lastallocation has been done; in this
strategy, pointer to the free list is savedfollowing an allocation and is used to begin for

the subsequent request.

The idea of this strategy is to reduce the search by avoiding examinationof smaller blocks that, in loifg
run, tends to be created at the beginningof the free list as it happens in case of first-fSELF
REFRENTIAL STRUCTURES

Self-Referential structures are those structures that have one or more pointers which point to the sgme
type of structure, as their member.

Self Referential Structures

struct node {
int dataf;
char data2;

struct node* link;

b

In other words, structures pointing to the same type of structures are self- referential in nature.
Example: struct node {

int datal;

char data2;

struct node* link;

}

int main()

{

struct node ob; return O;

https://www.geeksforgeeks.org/structures-c/

In the above example ‘link’ is a pointer to a structure of type ‘node’. Hence, the structure ‘node’ igja
self-referential structure with ‘link’ as the referencing pointer.

An important point to consider is that the pointer should be initialized properly before accessing,

as by default it contains garbage value.

Types of Self Referential Structures

1. Self Referential Structure with Single Link
2. Self Referential Structure with Multiple Links

Self Referential Structure with Single Link: These structures can have only one self-pointer as {peir
member. The following example will show us how to connect the objects of a self-referential
structure with the single link and access the corresponding data members. The connection fornjed
is shown in the following figure.

|10|20|—|—>|30|40|x|

ob1 ob2

Self Referential Structure with Multiple Links: Self referential structures with multiple links c3
have more than one self-pointers. Many complicated data structures can be easily constructed (§sing
these structures. Such structures can easily connect to more than one nodes at a time. The
following example shows one such structure with more than one links.

The connections made in the above example can be understood using the following figure.

e
e

struct node { int data;

struct node* prev_link; struct node* next_link;

};

DYNAMIC MEMEORY ALLOCATION

Since C is a structured language, it has some fixed rules for programming. One of it includes chanfjing
the size of an array. An array is collection of items stored at continuous memory locations.

55 B3 17 22 B8 B9 97 89

1 2 & | =-ArrayIndices

Array Length=9
First Index=0
Last Index=8

As it can be seen that the length (size) of the array above made is 9. But what if there is a requirenijent
to change this length (size). For Example,

remaining 4 indices are just wasting memory in this array. So there is a requirement to lessen tje
length (size) of the array from 9 to 5.

a need to enter 3 more elements in this array. In this case 3 indices more are required. So the Ighgth
(size) of the array needs to be changed from 9 to 12.

This procedure is referred to as Dynamic Memory Allocation in C.

C Dynamic Memory Allocation can be defined as a procedure in which the size of a data structutf
(like Array) is changed during the runtime.

C provides some functions to achieve these tasks. There are 4 library functions provided by C defiped
under <stdlib.h> header file to facilitate dynamic memory allocation in C programming. Theyjare:

malloc()

calloc()

free()

realloc()

malloc() method

“malloc” or “memory allocation” method in C is used to dynamically allocate a single large blogk of

memory with the specified size. It returns a pointer of type void which can be cast into a pointgr of
any form. It initializes each block with default garbage value.

Syntax:

ptr = (cast-type*) malloc(byte-size)

For Example:

ptr = (int*) malloc(100 * sizeof(int));

Since the size of int is 4 bytes, this statement will allocate 400 bytes of
memory. And, the pointer ptr holds the address of the first byte in the

Malloc()

— —e

int* ptr = (int*) malloc (5* sizeof (int)
!

ptr =] — Alarge 20by1es memory bio

«— 20 bytes of memory —»

#include <stdio.h> #include <stdlib.h>

int main()

{

/[This pointer will hold the

// base address of the block created int* ptr;

intn,i;

Il Get the number of elements for the array n = 5;

printf("Enter number of elements: %d\n", n);

I/l Dynamically allocate memory using malloc() ptr = (int*)malloc(n * sizeof(int));

Il Check if the memory has been successfully

/[allocated by malloc or not if (ptr == NULL) {
printf("Memory not allocated.\n"); exit(0);

b

else {

/l Memory has been successfully allocated printf(*Memory successfully allocated using malloc.\n'p;

Il Get the elements of the array for (i = 0; i <n; ++i) {
ptrfi] =1+ 1;
¥

I/ Print the elements of the array printf(*'The elements of the array are: "); for (i =0; i < n; ++i) {
printf("%d, ", ptr[i]);

¥

}

return O;

¥

calloc() method

“calloc” or “contiguous allocation” method in C is used to dynamically allocate the specified nufpber
of blocks of memory of the specified type. It initializes each block with a default value ‘0.

160

Syntax:

161

ptr = (cast-type*)calloc(n, element-size);
For Example:
ptr = (float*) calloc(25, sizeof(float));

This statement allocates contiguous space in memory for 25 elements
each with the size of the float.

Calloc()

PR ——T % VT

int* ptr = (int*) calloc (5, sizeof (int‘));
.

v

pr=(T [[[]
- dbhe
20 bytes of memory -

#include <stdio.h> #include <stdlib.h>

int main()

{

/[This pointer will hold the
// base address of the block created int* ptr;

intn,i;

Il Get the number of elements for the array n = 5;

printf("Enter number of elements: %d\n", n);
// Dynamically allocate memory using calloc() ptr = (int*)calloc(n, sizeof(int));
/I Check if the memory has been successfully

/[allocated by calloc or not if (ptr == NULL) {

printf("Memory not allocated.\n");

exit(0);
}

else {

/l Memory has been successfully allocated printf(*Memory successfully allocated using calloc.\n"J

Il Get the elements of the array for (i = 0; i <n; ++i) {
ptrfi] =1+ 1;
¥

I/ Print the elements of the array printf("'The elements of the array are: "); for (i=0; i <n; ++i) {
printf("%d, ", ptr[i]);

by

}

return O;

¥

free() method

“free” method in C is used to dynamically de-allocate the memory. The memory allocated using
functions malloc() and calloc() is not de- allocated on their own. Hence the free() method is usg
whenever the dynamic memory allocation takes place. It helps to reduce wastage of memory b
freeing it.

Syntax:

free(ptr);

Free()

int* ptr = (int*) calloc (5, Eizeof(int));

GHEN | | | [IS

«—— 20bytes of memory ——»

l

operation on ptr
free(ptr)

Example:

#include <stdio.h> #include <stdlib.h> int main()

{

/I This pointer will hold the
// base address of the block created int *ptr, *ptr1;

intn,i;

Il Get the number of elements for the array n = 5;

printf("Enter number of elements: %d\n", n);

I/l Dynamically allocate memory using malloc()

ptr = (int*)malloc(n * sizeof(int));

/I Dynamically allocate memory using calloc() ptrl = (int*)calloc(n, sizeof(int));

Il Check if the memory has been successfully

/ allocated by malloc or not

If (ptr == NULL || ptrl == NULL) { printf("Memory not allocated.\n"); exit(0);
}

else {

/l Memory has been successfully allocated printf("Memory successfully allocated using malloc.\n'p;

Il Free the memory free(ptr);

printf("Malloc Memory successfully freed.\n");

/I Memory has been successfully allocated printf(*\nMemory successfully allocated using calloc.\n[");

/I Free the memory free(ptrl);

printf("Calloc Memory successfully freed.\n");

¥

return O;

¥

realloc() method

“realloc” or “re-allocation” method in C is used to dynamically change the memory allocation ofja
previously allocated memory. In other words, if the memory previously allocated with the helgof
malloc or calloc is insufficient, realloc can be used to dynamically re-allocate memory. re-
allocation of memory maintains the already present value and new blocks will be initialized wigh
default garbage value.

Syntax:
ptr = realloc(ptr, newSize);

.
V'\I\\AICI')I\

wihAara ntr ic raallacatAaA wiith nAwr cian

Realloc()

. T 4 bytes
int* ptr = (int*) malloc (5* sizeof (int));

pr=| _________|— G

+— 20 bytes of memory —

!

ptr = realloc (ptr, 10* sizeof(int)); _
. T &
.

40 bytes of memory

If space is insufficient, allocation fails and returns a NULL pointer. #include <stdio.h>

#include <stdlib.h>

int main()

{

I/ This pointer will hold the
// base address of the block created int* ptr;

intn,i;

/I Get the number of elements for the array n = 5;

printf("Enter number of elements: %d\n", n);

// Dynamically allocate memory using calloc() ptr = (int*)calloc(n, sizeof(int));

Il Check if the memory has been successfully
/[allocated by malloc or not if (ptr == NULL) {
printf("Memory not allocated.\n"); exit(0);

¥

else {

/I Memory has been successfully allocated printf(**Memory successfully allocated using calloc.\n"Jj

Il Get the elements of the array for (i =0; i <n; ++i) {

ptrfi] =1+ 1;

/I Print the elements of the array printf(*'The elements of the array are: "); for (i=0; i <n; ++i) {
printf("%d, ", ptr[i]);

/I Get the new size for the array n = 10;

printf("\n\nEnter the new size of the array: %d\n", n);

/I Dynamically re-allocate memory using realloc() ptr = realloc(ptr, n * sizeof(int));

// Memory has been successfully allocated

printf(*"Memory successfully re-allocated using realloc.\n");

Il Get the new elements of the array for (i =5; i <n; ++i) {

ptri] =1+ 1;

I/ Print the elements of the array printf(*The elements of the array are: "); for (i =0; i <n; ++i) {

printf("%d, ", ptr[i]);

free(ptr);
}

return O;

¥
LINKED LISTS

A linked list, in simple terms, is a linear collection of data elements. These data elements are
called nodes.

Linked list is a data structure which in turn can be used to implement other data structures.

Figure 6.1 Simple linked list

In Fig, we can see a linked list in which every node contains two parts, an integer and a poinjer
to the next node.

The left part of the node which contains data may include a simple data type, an array, or a
structure.

The right part of the node contains a pointer to the next node (or address of the next node in
sequence).

The last node will have no next node connected to it, so it will store a special value called NU|LL.
In Fig, the NULL pointer is represented by X.

While programming, we usually define NULL as —1. Hence, a NULL pointer denotes the engjof
the list.

Linked lists contain a pointer variable START that stores the address of the first node in thejlist.

We can traverse the entire list using START which contains the address of the first node; thg
next part of the first node in turn stores the address of its succeeding node.

Using this technique, the individual nodes of the list will form a chain of nodes.
If START = NULL, then the linked list is empty and contains no nodes.

In C, we can implement a linked list using the following code: struct node

{

int data;

struct node *next;

b

Let us see how a linked list is maintained in the memory.

. In order to form a linked list, we need a structure called node

which has two fields, DATA and NEXT.

* DATA will store the information part and NEXT will store the address of the next nodeffin
sequence. Consider Fig. 6.2.

In the figure, we can see that the variable START is used to store the address of the firs
node. Here, in this example, START= 1, so the first data is stored at address 1, which is

The corresponding NEXT stores the address of the next node, which is 4. So, we will logk at
address 4 to fetch the next data item.

The second data element obtained from address 4 is E.

Again, we see the corresponding NEXT to go to the next node. From the entry in thje
NEXT, we get the next address, that is 7, and fetch L as the data.

We repeat this procedure until we reach a position where the NEXT entry contains —1 ¢
NULL, as this would denote the end of the linked list.

L
L

u
e
3
£
S
=1
I
=
=

M
o

o —1

Figure 6_2 sTarRT pointing to the first element

Advantages

Linked list have many advantages. Some of the very important advantages are:

Linked Lists are dynamic data structure: That is, they can grow or shrink during the executifpn of
a program.

Efficient memory utilization: Here, memory is not pre- allocated. Memory is allocated whengver
it is required. And it is deallocated when it is no longer needed.

Insertion and deletions are easier and efficient: Linked lists provide flexibility in inserting (Jata
item at a specified position and deletion of a data item from the given position.

Many complex applications can be easily carried out with linked lists.

Disadvantages

- More Memory: If the numbers of fields are more, then more memory space is needed.

- Access to an arbitrary data item is little bit cumbersome and also time consuming.

Types of Linked List
Following are the various flavours of linked list.

Simple Linked List — Item Navigation is forward only.

Doubly Linked List — Items can be navigated forward and backward way.

Circular Linked List — Last item contains link of the first element as next and and first eleme(jt
has link to last element as prev.

Basic Operations
Insertion — add an element at the beginning of the list.
Display — displaying complete list.
Search — search an element using given key.
Delete — delete an element using given key
SINGLY LINKED Lists

* Asingly linked list is the simplest type of linked list in which every node contains some (Jata
and a pointer to the next node of the same data type.

A singly linked list allows traversal of data only in one way. Figure 6.7 shows a singly lirfked
list

G EE IR E R

Figure 6.7 Singly linked list

LINKED LIST OPERATIONS

Traversing a Linked List

* Traversing a linked list means accessing the nodes of the list in order to perform some
processing on them.

a linked list always contains a pointer variable START which stores the address of{ghe
first node of the list. End of the list is marked by storing NULL or -1 in the NEXT field gf the
last node.

For traversing the linked list, we also make use of another pointer variable PTR wigsich
points to the node that is currently being accessed.

The algorithm to traverse a linked list is shown in Fig. 6.8.

Step 1: [INITIALIZE] SET PTR = START
Step 2: Repeat Steps 3 and 4 while PTR != NULL

Step 3: Apply Process to PTR —=DATA
Step 4: SET PTR = PTR — NEXT

[END OF LOOP]
Step 5: EXIT

Figure 6.8 Algorithm for traversing a linked list

In this algorithm, we first initialize PTR with the address of START. So now, PTR poinfs to
the first node of the linked list.

Then in Step 2, a while loop is executed which is repeated till PTR processes the last nog
that is until it encounters NULL.

In Step 3, we apply the process (e.g., print) to the current node, that is, the node pointeo
PTR.

In Step 4, we move to the next node by making the PTR variable point to the node
whose address is stored in the NEXT field.

Searching for a Value in a Linked List

1: [INITIALIZE] SET PTR = START
2: Repeat Step 3 while PTR = NULL
3: IF vAL = PTR— DATA
SET POS = PTR
Go To Step S
ELSE
SET PTR = PTR —/— MEXT
[END OF IF]
[END OF LOOP]
4: SET POS = MNULL
5: EXIT

6.10 Algorithm to search a linked list

Consider the linked list shown in Fig. 6.11. If we have VAL = 4, then the flow of the algorith
can be explained as shown in the figure.

[l g7zl =] =] F—>l2] | F—is]|x]

PTR
Here PTR —> DATA = 1. Since PTR —> DATA != 4, we move to the next node.

[2 e S s R [P s S s S I (e S IR S

Here PTR —> . Since PTR —>»> DATA != 4, we move to the next node.

[2] —— (2] >l F—l=2] e[F—>{s]x]

PTR
Here PTR —> 3. Since PTR —> DATA != 4, we move to the next node.

[+] 5] F>[a] F>[2] F>[] F+>{=[%]
| | | | | | |
PTR

Here PTR —> 4. Since PTR —> DATA = 4, POS = PTR. POS now stores
the address node that contains WAL

Figure 6.11 Searching a linked list

Steps to create a linked list

Step 1: Include alloc.h Header File #include<alloc.h>

1. We don"t know, how many nodes user is going to create once he execute the program.

2. In this case we are going to allocate memory using Dynamic Memory Allocation functions
malloc.

3. Dynamic memory allocation functions are included in alloc.h

Step 2 : Define Node Structure

We are now defining the new global node which can be accessible through any of the function.
struct node

{ int data;

struct node *next;

}rstart=NULL,;

Step 3 : Create Node using Dynamic Memory Allocation .Now we are creating one node dynamicplly
using malloc function.We don“t have prior knowledge about number of nodes , so we are callifpg
malloc function to create node at run time.

new_node=(struct node *)malloc(sizeof(struct node));

Fill Information in newly Created Node ,Now we are accepting value from the user using scanf.
Accepted Integer value is stored in the data field. Whenever we create new node , Make its Nekt
Field

http://www.c4learn.com/dynamic-memory-allocation-malloc-calloc.html
http://www.c4learn.com/dynamic-memory-allocation-malloc-calloc.html

as NULL. printf("Enter the data : "); scanf("%d",&new_node-

>data);

Step 4 : if(start==NULL) then new_node -> next = NULL,; start = new_node;
otherwise ptr=start; while(ptr->next!=NULL) ptr=ptr->next;

ptr->next = new_node; new_node->next=NULL;

step 5:continue this process till while(num!=-1)

Inserting a New Node in a Linked List
* Case 1: The new node is inserted at the beginning.
* Case 2: The new node is inserted at the end.

* Case 3: The new node is inserted after a given node.
CASE 1: Inserting a Node at the Beginning of a Linked List

* Consider the linked list shown in Fig. 6.12. Suppose we want to add a new node with daf 9
and

* add it as the first node of the list. Then the following changes will be done in the linked [fst.

1

START
Allocate memory for the new node and initialize its DATA part to 9.

9

Add the new node as the first node of the list by making the NEXT part of the new
node contain the address of START.

9 > 1 > 7 > 3 >

START
Now make START to point to the first node of the list.

9 > 1 > 7 > 3 > 4 >

START

Figure 6.12 Inserting an element at the beginning of a linked list

Step 1: IF AVATL = MNULL

Write OWERFLOW

Go to Step 7

[END OF IF]

Step 2: SET NEW MODE = AVATL
Step 3: SET AVATL = AVATIL — MNMEXT
Step 4: SET NEW _MNODE —— DATA = WAL
Step S5: SET MNEW MODE — MEXT = START
Step 6: SET START = MNEW_MNODE
Step 7: EXIT

Figure 6.13 Algorithm to insert a new node at
the beginning

In Step 1, we first check whether memory is available for the new node. If the free memjpry
has exhausted, then an OVERFLOW message is printed.

Otherwise, if a free memory cell is available, then we allocate space for the new node.

Set its DATA part with the given VAL and the next part is initialized with the address df the
first node of the list, which is stored in START.

179

Now, since the new node is added as the first node of the list, it will now be known as th¢
START node, that is, the START pointer variable will now hold the address of the
NEW_NODE.

Note the following two steps:
* Step 2: SET NEW_NODE = AVAIL
e Step 3: SET AVAIL = AVAIL -> NEXT

* These steps allocate memory for the new node.

Program
node *insert_beg(node *start)

{

node *new_node; int num;

printf(*'\n Enter the data : **); scanf(*'%d"", &num);

new_node = (node *)malloc(sizeof(node)); new_node -> data = num;
new_node -> next = start; start = new_node;
return start;

}
CASE 2: Inserting a Node at the End of a Linked List

1
START

Allocate memory for the new node and initialize its DATA part to 9 and
NEXT part to NULL.

9 | X

Take a pointer variable PTR which points to START.

1 > > > 4 > 2

START, PTR
Move PTR so that it points to the last node of the list.
s I s [s e I e N U s R I s KR K

PTR

Add the new node after the node pointed by PTR. This is done by storing the address
of the new node in the NEXT part of PTR.

e B B g [s e Y B s R e KA I o E e BN EY

PTR

Figure 6.14 Inserting an element at the end of a linked list

Suppose we want to add a new node with data 9 as the last node of the list. Then the followin
changes will be done in the linked list.

Ad: IF AvVATL = MNMULL
Write OWVERFLOW
o to Step 10
[END OF IF]
2: SET MNMEW_ _MNODE = AaAWATL
3= SET avaTlL = AWATL — = NEXT
4: SET NEW_NODE —=DATA = WAL
5: SET MNEW_ NODE — = MNEXT = HKNULL
[=T SET PTR = START
F: Repeat Step 8 while PTR —= MNEXT != MULL
8: SET PTR = PTR —= NEXT
[END OF LOOP]
9z SET PTR —= NEXT = NEWW__MNODE
d1ea: EXIT

6.15 Aldgorithim to insert a new node at the end

e In Step 6, we take a pointer variable PTR and initialize it with START. That is, PTR now poipts
to the first node of the linked list.

e Inthe while loop, we traverse through the linked list to reach the last node.

e Once we reach the last node, in Step 9, we change the NEXT pointer of the last node to storeghe
address of the new node.

program
struct node *insert_end(struct node *start)

{

struct node *ptr, *new_node; int num;

printf("\n Enter the data : "*); scanf("%d", &num);

new_node = (node *)malloc(sizeof(node)); new_node -> data = num;
new_node -> next = NULL,; ptr = start;

while(ptr -> next '= NULL) ptr = ptr -> next;

ptr -> next = new_node; return start;

¥
e CASE 3: Inserting a Node After a Given Node in a Linked List

Consider the linked list shown in Fig. 6.17. Suppose we want to add a new node with value 9

after the node containing data 3

: IF AVAIL = MNULL
Write OVERFLOW
Go to Step 12
[END OF IF]
S5tep : 5ET MNEW _NODE = AVATL
Step D SET AVAIL = AVAIL — = NEXT
S5tep : 5ET MEW_ NODE — = DATA = WAL
S5tep : SET PTR = START
S5tep : SET PREFTR = PTR
Step : Repeat Steps 8 and 9 while PREPTR — = DATA
1= MNLUM
S5tep : SET PREPTR = PTR
Step - SET PTR = PTR — = MEXT
[END OF LOOP]
Step 10: PREPTR —=NEXT = MNEW_MNODE
Step 11: SET MEW_MODE — = NEXT = PTR
Step 12: EXIT

Figure 6.16 Algorithm to insert a new node after a node
that has value NUM

In Step 5, we take a pointer variable PTR and initialize it with START. That is, PTR now poipts
to the first node of the linked list.

Then we take another pointer variable PREPTR which will be used to store the address of th
node preceding PTR.

Initially, PREPTR is initialized to PTR.
So now, PTR,PREPTR, and START are all pointing to the first node of the linked list.

In the while loop, we traverse through the linked list to reach the node that has its value equaljto
NUM.

We need to reach this node because the new node will be inserted after this node.

Once we reach this node, in Steps 10 and 11, we change the NEXT pointers in such a way thg
new node is inserted after the desired node.

1 L. L.
Lo Ean Eoan Fan L L

START
Allocate memory for the new node and initialize its DATA part to 9.

9

Take two pointer variables PTR and PREPTR and initialize them with START
so that START, PTR, and PREPTR point to the first node of the list.

1 > 7 > 3 > 4 = 2 > 6 > 5

START

PTR
PREPTR
Move PTR and PREPTR until the DATA part of PREPTR = value of the node
after which insertion has to be done. PREPTR will always point to the
node just before PTR.

1 = 7 -

1 > > 3 > 4 > > >

START PREPTR PTR
Add the new node in between the nodes pointed by PREPTR and PTR.

1 > 7 > 3 4 > 2 > 6 >

k,

PREPTR

Y

Program

node *insert_after(node *start)

{

186

node *new_node, *ptr, *preptr; int num, val;

printf("\n Enter the data : "*); scanf(*%d", &num);

printf("\n Enter the value after which the data has to be inserted : "); scanf("%d", &val);

new_node = (node *)malloc(sizeof(node)); new_node -> data = num;
ptr = start; preptr = ptr;

while(preptr -> data = val)

{

preptr = ptr;

ptr = ptr -> next;

by

preptr -> next=new_node; new_node -> next = ptr; return start;

}
Deleting a Node from a Linked List

We will consider three cases and then see how deletion is done in each case.

Case 1: The first node is deleted.
Case 2: The last node is deleted.

Case 3: The node after a given node is deleted.

CASE 1:Deleting the First Node from a Linked List

Before we describe the algorithms in all these three cases, let us first discuss an important ter
called UNDERFLOW.

Underflow is a condition that occurs when we try to delete a node from a linked list that is enjpty.
This happens when START = NULL or when there are no more nodes to delete.

Note that when we delete a node from a linked list, we actually have to free the memory occupied
by that node.

Whatever be the case of deletion, we always change the AVAIL pointer so that it points to the
address that has been recently vacated.

1 r > r

START
Make START to point to the next node in sequence.

7 > 3 > 4 = 2

START

Figure 6.20 Deleting the first node of a linked list

1: IF START = MNUJULL
Write UMNDERFLOIW
o to Step 5
[END OF TIF]

Step 2: SET PTR = START
S5tep 3: SET START = START —— NEXT
5tep 4: FREE PTR
Step S5: EXIT

Figure 6_21 Algorithm to delete the first
node

If START = NULL, then it signifies that there are no nodes in the list and the control is
transferred to the last statement of the algorithm.

if there are nodes in the linked list, then we use a pointer variable PTR that is set to point to tlje
first node of the list.

For this, we initialize PTR with START that stores the address of the first node of the list.

In Step 3, START is made to point to the next node in sequence and finally the memor
occupied by the node pointed by PTR (initially the first node of the list) is freed and returfped
to the free pool.

Program

struct node *delete_beg(node *start)
{

struct node *ptr; ptr = start;

start = start -> next;

free(ptr); return start;

}
CASEZ2: Deleting the Last Node from a Linked List

* Consider the linked list shown in Fig. 6.22. Suppose we want to delete the last node from the
linked list, then the following changes will be done in the linked list.

1

START
Take pointer variables PTR and PREPTR which initially point to

1 > 7 > 3 > 4 > 2 » 6

START
PREPTR
PTR
Move PTR and PREPTR such that NEXT part of PTR = NULL. PREPTR always points
to the node just before the node pointed by PTR.

1 > 7 > 3 > 4 > 2 > 6 > 5

START PREPTR PTR
Set the NEXT part of PREPTR node to NULL.

1 > 7 > 3 > 4 >

START

Figure 6.22 Deleting the last node of a linked list

Figure 6.23 shows the algorithm to delete the last node from a linked list. In Step 2, we take
pointer variable PTR and initialize it with START.

That is, PTR now points to the first node of the linked list. In the while loop, we take another
pointer variable PREPTR such that it always points to one node before the PTR.

Once we reach the last node and the second last node, we set the NEXT pointer of the secondjlast
node to NULL, so that it now becomes the (new) last node of the linked list.

The memory of the previous last node is freed and returned back to the free pool

: IF START = NULL
Write UNDERFLOW
Go to Step 8
[END OF IF]
Step 2: SET PTR = START
Step 3: Repeat Steps 4 and 5 while PTR — NEXT != NULL
Step 4: SET PREPTR = PTR
Step 5: SET PTR = PTR—> NEXT
[END OF LOOP]
Step 6: SET PREPTR — NEXT = NULL
Step 7: FREE PTR
Step 8: EXIT

Figure 6.23 Algorithm to delete the last node

Program

node *delete_end(node *start)

{

node *ptr, *preptr; ptr = start;

while(ptr -> next = NULL)

{
preptr = ptr;

ptr = ptr -> next;
}preptr -> next = NULL,; free(ptr);
return start;}

CASE 3:Deleting the Node After a Given Node in a Linked List

* In Step 2, we take a pointer variable PTR and initialize it with START. That is, PTR now poipts
to the first node of the linked list.

In the while loop, we take another pointer variable PREPTR such that it always points t{f one
node before the PTR.

Once we reach the node containing VAL and the node

succeeding it, we set the next pointer of the node containing VAL to the address contained injjnext
field of the node succeeding it.

The memory of the node succeeding the given node is freed and returned back to the free podj.

: IF START = MNULL
Write UNDERF LOAW
Go to Step 10
[END OF IF]
: SET PTR = START
: SET PREPTR = PTR
: Repeat Steps 5 and 6 while PREPTR —— DATA = NUM
SET PREPTR = PTR
: SET PTR = PTR — MNEXT
[END OF LOOP]
: SET TEMP = PTR
: SET PREPTR — MEXT = PTR —/— MEXT
FREE TEMP
O: EXIT

Step
Step
Step
Step
Step

Step
Step
Step
Step

FOUBSY OnpwWN

Figure 6.25 Algorithm to delete the node after a given node

Consider the linked list shown in Fig. 6.24.

Suppose we want to delete the node that succeeds the node which contains data value 4. Therjthe
following changes will be done in the linked list

(2] g7 | gz g2 F—>l2] g—>ls]| G5 [x]

START
Take pointer wvariables PTR and PREPTR which initially point to START.

(2] Izl =] F—>la] F—>{2] 4>l] F—[s[x]

START
PREPTR
PTR

Mowve PREPTR and PTR such that PREPTR points to the node containing WAL
and PTR points to the succeeding node.

|1|4—H?|4—H3|4—H4|4—42|4—46|4—45|X|
START PREPTR PT
|1|4—>4?|4—>13|4—>14|4—>12|4—>16|4—>15|><|
START PREPTR PTR

(2] I 7 [=] F—{2] F—{2] {6 [{5 [x]
START PREPTR PTR

Set the NEXT part of PREPTR to the NEXT part of PTR.

(2] F—lz2]] T2] [=2] | Iilﬁ—ﬂf‘l“*l

START PREPTR PTR

(2 G 7 Tz T2 F—ls] s x]

START

Figure 6.24 Deleting the node after a given node in a linked list

Program

node *delete_after(node *start)

{

node *ptr, *preptr; int val;

printf("\n Enter the value after which the node has to deleted : *);

193

scanf("%d", &val); ptr = start;
preptr = ptr;
while(preptr -> data = val)

{
preptr = ptr;
ptr = ptr -> next;

}
preptr -> next=ptr -> next; free(ptr);

return start;

¥

CIRCULAR LINKED LISTs
* Inacircular linked list, the last node contains a pointer to the first node of the list.
* We can have a circular singly linked list as well as a circular doubly linked list.

* While traversing a circular linked list, we can begin at any node and traverse the list in any
direction, forward or backward, until we reach the same node where we started.

* Thus, acircular linked list has no beginning and no ending. Figure

6.26 shows a circular linked list.

Figure 6.26 Circular linked list

Inserting a New Node in a Circular Linked List

* Case 1: The new node is inserted at the beginning of the circular linked list.
* Case 2: The new node is inserted at the end of the circular linked list.
CASE 1:Inserting a Node at the Beginning of a Circular Linked List

* Consider the linked list shown in Fig. 6.29. Suppose we want to add a new node wit
data 9 as the first node of the list.

Step 1: IF AVATL = MNULL
Write OWERFLOW
Go to Step 11
[END OF IF]
Step 2: SET NEW_MNODE = AWVATL
Step 3: SET AVATIL = AWVATL — NEXT
Step 4: SET NEW_MNODE —/ DATA = WAL
Step 5: SET PTR = START
Step 6: Repeat Step 7 while PTR — MEXT != START
Step 7: PTR = PTR — NEXT
[END OF LOOP]
Step 8: SET NEW_MNODE —/ NEXT = START
Step 9: SET PTR —= NEXT = NEW_MNODE
Step 10: SET START = MNEW_ _MNODE
Step 11: EXIT

Figure 6.30 Algorithm to insert a new node at the beginning

Figure 6.30 shows the algorithm to insert a new node at the beginning of a linked list. In Step
we first check whether memory

Is available for the new node. If the free memory has exhausted, then an OVERFLOW message is

printed.

Otherwise, if free memory cell is available, then we allocate space for the new node.

Set its DATA part with the given VAL and the NEXT part is initialized with the address of thje
first node of the list, which is stored in START.

Now, since the new node is added as the first node of the list, it will now be known as the STRRT
node,that is, the START pointer variable will now hold the address of the NEW_NODE.

While inserting a node in a circular linked list, we have to use a while loop to traverse to the [pst
node of the list.

Because the last node contains a pointer to START, its NEXT field is updated so that after
insertion it points to the new node which will be now known as START

B O R T

Allocate memory for the new node and initialize its DATA part to 9.

(o]]

Take a pointer wvariable PTR that points to the START node of the list.
|1|+~1?|4+|3|4+|4|%%2|%%6|%*15|||
START, APTR

Move PTR so that it now points to the last node of the list.
|1|+>|?|4+|3|4+14|%+12|%%6|%+|5| |
starT 4 PTR
Add the new node in between PTR and START.

|9|+>|1|4+|?|4++3|%+44|%ﬂ42|4+|6| 4+|5|||
START PTR
Make SThRT point to the new node.

ol oz [sl Ile] Tz e g5]

START

Figure 6.29 Inserting a new node at the beginning of a circular linked list

Program insert new node at beginning

struct node *insert_beg(struct node *start)

{

struct node *new_node, *ptr; int num;

printf(*\n Enter the data : "); scanf("%d", &num);

new_node = (struct node *)malloc(sizeof(struct node)); new_node -> data = num;
ptr = start;

while(ptr -> next != start) ptr = ptr -> next;

ptr -> next = new_node; new_node -> next = start; start = new_node;

return start;

}
CASE 2: Inserting a Node at the End of a Circular Linked List

1

sTART A
Allocate memory for the new node and initialize its DATA part to 9.

9
Take a pointer wvariable PTR which will initially point to START.

1 > 3 > 4 > 2 > 6 » 5
START, A
Move PT i of

1 >
START A
Add the new node after the node pointed by PTR.

1 = 7 = 3 > 4 = 2 -

START A

Figure 6.31 Inserting a new node at the end of a circular linked list

Step 1: IF AVAIL = NULL
Write OVERFLOW
Go to Step 10
[END OF IF]
Step 2: SET NEW _MNODE = AVAIL
Step 3: SET AVAIL = AVAIL —/ NEXT
Step 4: SET NEW NODE — DATA = VAL
Step 5: SET NEW NMNODE — MNEXT = START
Step 6: SET PTR = START
Step 7: Repeat Step 8 while PTR —NEXT != START
Step 8: SET PTR = PTR —/= NEXT
[END OF LOOP]
Step 9: SET PTR —=NEXT = NEW NODE
Step 10: EXIT

Figure 6.32 Algorithm to insert a new node at the end

Figure 6.32 shows the algorithm to insert a new node at the end of a circular linked list.
In Step 6, we take a pointer variable PTR and initialize it with START.
That is, PTR now points to the first node of the linked list.

In the while loop, we traverse through the linked list to reach the last node.

Once we reach the last node, in Step 9, we change the NEXT pointer of the last node to store ffhe
address of the new node.

Remember that the NEXT field of the new node contains the address of the first node which [k
denoted by START.

Program

struct node *insert_end(struct node *start)

{

struct node *ptr, *new_node; int num;

printf("\n Enter the data : "*); scanf(*%d", &num);

new_node = (struct node *)malloc(sizeof(struct node)); new_node -> data = num;
ptr = start;

while(ptr -> next != start) ptr = ptr -> next;

ptr -> next = new_node; new_node -> next = start; return start; }

Deleting a Node from a Circular Linked List

. Case 1: The first node is deleted.

. Case 2: The last node is deleted.

CASE 1: Deleting the First Node from a Circular Linked List

1

START A
Take a variable PTR and make it point to the START node of the

1 > 7 > 3 > 4 > 2 > 6 > 5
START,A PTR

Move PTR further so that it now points to the last node of the list.

1 » 7 > 3 > 4 > 2 > 6 > 5
START A PTR

The NEXT part of PTR is made to point to the second node of the list
and the memory of the first node is freed. The second node becomes
the first node of the list.

7 > 3
START A

Figure 6.33 Deleting the first node from a circular linked list

In Step 1 of the algorithm, we check if the linked list exists or not. If START = NULL, then i
signifies that there are no nodes in the list and the control is transferred to the last statement ofjghe
algorithm.

However, if there are nodes in the linked list, then we use a pointer variable PTR which will [fe
used to traverse the list to ultimately reach the last node.

In Step 5, we change the next pointer of the last node to point to the second node of the circufpr
linked list.

In Step 6, the memory occupied by the first node is freed.

in the pointer variable START.

IF START = NULL
Write UNDERFLOW
Go to Step 8
[END OF IF]
Step : SET PTR = START
Step 3: Repeat Step 4 while PTR — NEXT != START
S5tep : SET PTR = PTR — NEXT
[END OF LOOP]
Step 5: SET PTR —= NEXT = START —= NEXT
Step 6: FREE START
Step 7: SET START = PTR — NEXT
Step 8: EXIT

Figure 6.34 Algorithm to delete the first node

Program

struct node *delete_beg(struct node *start)

{

struct node *ptr;

ptr = start;

while(ptr -> next != start) ptr = ptr -> next;
ptr -> next = start -> next; free(start);

start = ptr -> next; return start;

b
CASE 2: Deleting the Last Node from a Circular Linked List

1 r
START A
Take two pointers PREPTR and PTR which will initially point to START.

1 7 3 4 2 b 5

START +

PREPTR
PTR

Move PTR so that it points to the last node of the list. PREPTR will
always point to the node preceding PTR.

1 > 7 > 3 > 4 > 2 > 6 > 5
START A PREPTR PTR

Make the PREPTR's next part store START node's address and free the
space allocated for PTR. Now PREPTR is the last node of the list.

1 > 6
START A PREPTR

Figure 6.35 Deleting the last node from a circular linked list

In Step 2, we take a pointer variable PTR and initialize it with START.

That is,PTR now points to the first node of the linked list.

201

* Inthe while loop, we take another pointer variable PREPTR such that PREPTR always pointj to
one node before PTR.

* Once we reach the last node and the second last node, we set the next pointer of the second lgpt

node to START, so that it now becomes the (new) last node of the linked list.

* The memory of the previous last node is freed and returned to the free pool.

program

Step
Step
Step
Step

Step
Step
Step

» IF START = NULL

Write UNDERFLOW
Go to Step 8
[END OF IF]

» SET PTR = START
: Repeat Steps 4 and 5 while PTR—> NEXT != START

SET PREPTR = PTR
SET PTR = PTR —> NEXT
[END OF LOOP]

: SET PREPTR —>NEXT = START
: FREE PTR
» EXIT

Figure 6.36 Algorithm fo delete the last node

program

struct node *delete_end(struct node *start)

{

struct node *ptr, *preptr; ptr = start;
while(ptr -> next != start)

{

preptr = ptr;

ptr = ptr -> next;

}

preptr -> next = ptr -> next; free(ptr);

return start; }

DOUBLY LINKED LISTS

* Adoubly linked list or a two-way linked list is a more complex type of linked list which conthi
a pointer to the next as well as the previous node in the sequence.

Therefore, it consists of three parts—data, a pointer to the next node, and a pointer to th
previous node .

>

i
-«

i
¥

Figure 6.37 Doubly linked list

1 C. the structure of a doubly linked list can be given as,

struct node

{

struct node *prev;
int data;
struct node *next;

The PREV field of the first node and the NEXT field of the last node will contain NULL.

The PREV field is used to store the address of the preceding node, which enables us to traverje
the list in the backward direction.

Thus, we see that a doubly linked list calls for more space per node and more expensive basi
operations.

However, a doubly linked list provides the ease to manipulate the elements of the list as it
maintains pointers to nodes in both the directions (forward and backward).

* The main advantage of using a doubly linked list is that it makes searching twice as efficient.
Inserting a New Node in a Doubly Linked List
* Case 1: The new node is inserted at the beginning.
Case 2: The new node is inserted at the end.
* Case 3: The new node is inserted after a given node.

CASE 1: Inserting a Node at the Beginning of a Doubly Linked List

X |1 {"’ 7 P 3 {"' 4 {“' 2| x

START
Allocate memory for the new node and initialize its DATA part to 9 and PREV field to NULL.

X9

Add the new node before the START node. Now the new node becomes the first node of
the list.

X9
START

L. - . - .
L E L L Ea

2

4

7

3

1

-
-

-
=

ol
£

-
&£

Figure 6.39 Inserting a new node at the beginning of a doubly linked list

In Step 1, we first check whether memory is available for the new node.

If the free memory has exhausted, then an OVERFLOW message is printed.

Otherwise, if free memory cell is available, then we allocate space for the new node.

Set its DATA part with the given VAL and the NEXT part is initialized with the address of thjfe
first node of the list, which is stored in START.

Now, since the new node is added as the first node of the list, it will now be known as the STIART
node, that is, the START pointer variable will now hold the address of NEW_NODE.

IF AVAIL = NULL

Write OWVERFLOW

Go to Step ©

[END OF IF]

Step 2: SET NEW_NODE = AVAIL
Step 3: SET AVAIL = AVAIL — NEXT
Step 4: SET MEW_MNODE — DATA = VAL
Step 5: SET MNMEW_MNODE —= PREV = NULL
Step 6: SET MNEW_MNODE —> NEXT = START
Step 7: SET START — PREV = NEW_NODE
Step 8: SET START = NEW _ NODE
Step 9: EXIT

Figure 6.40 Algorithm to insert a new node at
the beginning

program
struct node *insert_beg(struct node *start)

{

struct node *new_node;

int num;

printf("\n Enter the data : "*); scanf(*%d", &num);

new_node = (struct node *)malloc(sizeof(struct node)); new_node -> data = num;
start -> prev = new_node;

new_node -> next = start;

new_node -> prev = NULL,; start = new_node;

return start;

}
CASE 2: Inserting a Node at the End end of a Doubly Linked List

> > >
X 1 - ol - i
- - <« -

START
Allocate memory for the new node and initialize its DATA part to 9 and its
NEXT field to NULL.

X

pointer variable PTR and make it point to the first node of the list.

> > > >
* - *x -

START,PTR
Move PTR so that it points to the last node of the list. Add the new node after the
node pointed by PTR.

X |1 > 7 »> > > >

i
-

il > - -
- -« -« -

START

Figure 6.41 Inserting a new node at the end of a doubly linked list

Figure 6.42 shows the algorithm to insert a new node at the end of a doubly linked list. In Ste
we take a pointer variable PTR and initialize it with START.

In the while loop, we traverse through the linked list to reach the last node.

Once we reach the last node, in Step 9, we change the NEXT pointer of the last node to storeghe
address of the new node. Remember that the NEXT field of the

new node contains NULL which signifies the end of the linked list.

The PREV field of the NEW_NODE will be set so that it points to the node pointed by PTR (how
the second last node of the list).

S5tep 1: IF AVAIL = MNULL
Write OVERFLOW
Go to Step 11
[END OF IF]
5tep 2: S5ET NEW NODE = AVATL
Step 3: S5ET AVAITL = AVATL — NEXT
S5tep 4: S5ET MEW _MNODE — DATA = VAL
S5tep 5: S5ET MEW MNODE — MEXT = MNULL
5tep 6: SET PTR = START
Step 7: Repeat Step 8 while PTR—=MNEXT != NULL
5tep 8: S5ET PTR = PTR —/— NEXT
[END OF LOOP]
5tep 9: SET PTR —= MNEXT = NEW NODE
5tep 10: 5ET MEW _MNODE —/— PREV = PTR
S5tep 11: EXIT

Figure 6.42 Algorithm to insert a new node at the end

Program

struct node *insert_end(struct node *start)

{

struct node *ptr, *new_node; int num;

printf(*\n Enter the data :); scanf("%d", &num);

new_node = (struct node *)malloc(sizeof(struct node)); new_node -> data = num;
ptr=start;

while(ptr -> next '= NULL) ptr = ptr -> next;

ptr -> next = new_node; new_node -> prev = ptr; new_node -> next = NULL,; return start;

b
CASE 3: Inserting a Node After a Given Node in a Doubly Linked List

1: IF AVAIL = MNULL
Write OWERFLOW
Go to Step 12
[END OF IF]
Step 2: SET NEW_MNODE = AVATL
Step 3: SET AVATL = AVATL —— NMEXT
Step 4: SET NEW_MNODE —— DATA = VAL
Step 5: SET PTR = START
Step 6: Repeat Step 7 while PTR — DATA = NUM
S5tep 7: SET PTR = PTR —/= NEXT
[END OF LOOP]
Step 8: SET NEW_MNODE —— NEXT = PTR ——= NEXT
S5tep 9: SET MEW_ _MNODE —— PREW = PTR
Step 10: SET PTR — NMEXT = HNEW_MNODE
Step 11l: SET PTR ——= NEXT — PREW = MNEW__MNODE
Step 12: EXIT

Figure 6.43 Algorithm to insert a new node after a given node

Figure 6.43 shows the algorithm to insert a new node after a given node in a doubly linked list.

In Step 5, we take a pointer PTR and initialize it with START. That is, PTR now points to the first

node of the linked list. In the while loop, we traverse through the linked list to reach the node tpat
has its value equal to NUM.

We need to reach this node because the new node will be inserted after this node. Once we reach tjis

node, we change the NEXT and PREV fields in such a way that the new node is inserted after [jhe
desired node.

. k.
- F
il -1 -4 il
et T T et

i
y

e memory for the new node and initialize its DATA part to 9.

pointer variable PTR and make it point to the first node of the list.

X[1| [|7 |3 Y|4 2| x

- -4
- -

START,PTR

Move PTR further until the data part of PTR = value after which the
node has to be inserted.

X | 1 {"“' 7 >

X1

il
-

START

Figure 6.44 Inserting a new node after a given node in a doubly linked list

Program

struct node *insert_after(struct node *start)

{

struct node *new_node, *ptr; int num, val;

printf("\n Enter the data : "*); scanf(*%d", &num);

printf("\n Enter the value after which the data has to be inserted : "); scanf("%d", &val);

new_node = (struct node *)malloc(sizeof(struct node)); new_node -> data = num;

ptr = start;

while(ptr -> data !'= val) ptr = ptr -> next; new_node -> prev = ptr;

new_node -> next = ptr -> next; ptr -> next -> prev = new_node; ptr -> next = new_node;
return start;

¥
Deleting a Node from a Doubly Linked List

. Case 1: The first node is deleted.
. Case 2: The last node is deleted.

* Case 3: The node after a given node is deleted.

CASE 1: Deleting the First Node from a Doubly Linked List

* When we want to delete a node from the beginning of the list, then the following changes wilj be
done in the linked list.

I3 EN =< EEN I >=< I EN B >=< B K2 I >=< B E1 I =< IR E3 K3

Free the memory occupied by the first node of the list and make the second node of the
list as the START node.

x =] = [s] &= (7] &= [e] == [o]x]
START
Figure 6.47 Deleting the first node from a doubly linked list

1: IF START = MNULL
Write UNDERF LOW
Go to Step 6
[END OF IF]
Step 2: SET PTR = START

Step 32: SET START = 5START —— MNMEXT
Step 4: SET START — PREW = MNMULL
Step 5: FREE PTR

Step &: EXIT

Figure 6.48 Algorithm to delete the first node

Figure 6.48 shows the algorithm to delete the first node of a doubly linked list.

In Step 1 of the algorithm, we check if the linked list exists or not. If START =NULL, tjpen
it signifies that there are no nodes in the list and the control is transferred to the last statement (pf
the algorithm.

However, if there are nodes in the linked list, then we use a temporary pointer variable PTR tjat
IS set to point to the first node of the list.

For this, we initialize PTR with START that stores the address of the first node of the list.

In Step 3, START is made to point to the next node in sequence and finally the memory occupied
by PTR (initially the first node of the list) is freed and returned to the free pool.

Program

struct node *delete beg(struct node *start)
{

struct node *ptr; ptr = start;

start = start -> next;

start -> prev = NULL,; free(ptr);

return start;

b
CASE 2: Deleting the Last Node from a Doubly Linked List

* Suppose we want to delete the last node from the linked list, then the following changes will [pe
done in the linked list.

x|1] & < < <
START
Take a pointer variable PTR that points to the first node of the list.

X |1 {"“’ 3 _1,."“' 5 __{"‘" 7 {"" 8

START,PTR
Move PTR so that it now points to the last node of the list.

X |1 _{“; 3 {"* 5 > 7 {‘* 9

START PTR
Free the space occupied by the node pointed by PTR and store NULL in NEXT field of
its preceding node.

> >
X |1 < <
<

START
Figure 6.49 Deleting the last node from a doubly linked list

d: IF START = MULL
Write UMNMDERF LOIW
Go to Step 7
[END OF IF]
Step 2: SET PTR = START
Step 2 : Repeat Step 4 while PTR —/— MEXT 1=
Step 4: SET FPTR = PTR —MNEXT
[END OF LOOP]
Step 5: SET PTR — FREW —/— MNEXT = MNULL
Step &: FREE FTR
Step F: EXITT

Figure 6_5S0 Algorithmm to delete the last node

Figure 6.50 shows the algorithm to delete the last node of a doubly linked list.

213

In Step 2, we take a pointer variable PTR and initialize it with START.

That is, PTR now points to the first node of the linked list. The while loop traverses through tpe
list to reach the last node.

Once we reach the last node, we can also access the second last node by taking its address frg
the PREV field of the last node.

To delete the last node, we simply have to set the next field of second last node to NULL, so [jhat
it now becomes the (new) last node of the linked list.

* The memory of the previous last node is freed and returned to the free pool.
Program

struct node *delete_end(struct node *start)

{

struct node *ptr; ptr = start;

while(ptr -> next '= NULL) ptr = ptr -> next;

ptr -> prev -> next = NULL,; free(ptr);

return start;

¥

CASE 3 : Deleting the Node After a Given Node in a Doubly Linked List

> > >
X 1 Iy - - "
x . * *

START
Take a pointer variable PTR and make it point to the first node of the list.

i L e L

X1l 2 |3 & |4 & 7] &2 g &

START,PTR

Move PTR further so that its data part is equal to the value after which the node has
to be inserted.

> > > >
X|1 >, »
- el

START
Delete the node succeeding PTR.

X1 {"’ 3 {"’

START

X1

START

Figure 6.51 Deleting the node after a given node in a doubly linked list

1: IF START = MNULL
Write UNMDERFLOW
Go to Step 9
[END OF IF]
Step SET PTR = START
Step Repeat Step 4 while PTR — DATA
Step 4: SET PTR = PTR —/— MEXT
[END OF LOOP]
Step S SET TEMFP = PTR — MNMEXT
Step SET PTR ——=MNEXT = TEMF —— MEXT
Step : SET TEMP —— MNMEXT — PREW = PTR
Step : FREE TEMP
Step EXTIT

Figure 6.52 Algorithm to delaete a node after a given node

In Step 2, we take a pointer variable PTR and initialize it with

START. That is, PTR now points to the first node of the doubly linked list. The while loop traversgs
through the linked list to reach the given node.

* Once we reach the node containing VAL, the node

* succeeding it can be easily accessed by using the address stored in its NEXT field. The NEX
field of the given node is set to contain the contents in the NEXT field of the succeeding node.

Finally, the memory of the node succeeding the given node is freed and returned to the {fee
pool.

Program

struct node *delete_after(struct node *start)

{

struct node *ptr, *temp; int val,

printf(*\n Enter the value after which the node has to deleted : "); scanf("%d", &val);
ptr = start;

while(ptr -> data != val) ptr = ptr -> next;

temp = ptr -> next;

ptr -> next = temp -> next; temp -> next -> prev = ptr; free(temp);

return start;

¥

Header Linked Lists

A header linked list is a special type of linked list which contains a header node at the beginnjng
of the list. So, in a header linked list, START will not point to the first node of the list but START
will contain the address of the header node.

The following are the two variants of a header linked list:
Grounded header linked list which stores NULL in the next field of the last node.

Circular header linked list which stores the address of the header node in the next field [pf
the last node. Here, the header node will denote the end of the list.

Look at Fig. 6.65 which shows both the types of header linked lists.

Header node

k.
-

START

Header node

.
-~

A START

Figure 6.65 Header linked list

Application of linked list-Polynomial
Polynomial Addition
Linked list are widely used to represent and manipulate polynomials. Polynomials are the expressipns

containing number of terms with nonzero coefficient and exponents.In the linked representatigh of
polynomials, each term is considered as a node. And such a node contains three fields

http://www.ktustudents.in/
http://www.ktustudents.in/
http://www.ktustudents.in/
http://www.ktustudents.in/
http://www.ktustudents.in/
http://www.ktustudents.in/
http://www.ktustudents.in/

- Coefficient field
. Exponent field
Link field

The coefficient field holds the value of the coefficient of a term and the exponent field contains th
exponent value of the term. And the link field contains the address of the next term in the
polynomial. The polynomial node structure is

Address of
the
next
node(n
ext)

Coefficient(coeff) Exponent(expo)

Algorithm

Two polynomials can be added. And the steps involved in adding two polynomials are given belo

Read the number of terms in the first polynomial P

Read the coefficient and exponent of the first polynomial

Read the number of terms in the second polynomial Q

Read the coefficient and exponent of the second polynomial

Set the temporary pointers p and g to travers the two polynomials respectively
Compare the exponents of two polynomials starting from the first nodes

If both exponents are equal then add the coefficient and store it in the resultant linked list

b) If the exponent of the current term in the first polynomial P is less than the exponent of the
current term of the second polynomial then added the second term to the resultant linked list. Ajnd,
move the pointer q to point to the next node in the second polynomial Q.

If the exponent of the current term in the first polynomial P is greater than the exponent of th
current term in the second polynomial Q, then the current term of the first polynomial is addedjto
the resultant linked list. And move the pointer p to the next node.

d) Append the remaining nodes of either of the polynomials to the resultant linked list.

Let us illustrate the way the two polynomials are added. Let p and g be two polynomials having thijfee
terms each.

P=3x2+2x+7 Q=5x3+2x2+x

These two polynomial can be represented as

http://www.ktustudents.in/
http://www.ktustudents.in/
http://www.ktustudents.in/
http://www.ktustudents.in/
http://www.ktustudents.in/
http://www.ktustudents.in/

Step 1. Compare the exponent of p and the corresponding

exponent of g. Here,

expo(p)<expo(q)

So, add the terms pointed to by g to the resultant list. And now advance the q pointer.

Step 2.

=]

Compare the exponent of the current terms. Here,

expo(p)=expo(q)

So, add the coefficients of these two terms and link this to the resultant list. And, advance the poinfers
p and q to their next nodes.

[e]

Compare the exponents of the current terms again expo(p)=expo(q)

So, add the coefficients of these two terms and link this to the resultant linked list. And, advance tlge
pointers to their next nodes. Q reaches the NULL and p points the last node.

[

1] 1 Y

1054

There is no node in the segond polynomlal to compare with. So, the last node in the first polynomigl is
added to the end of thé=kesuina pekist. B v,

Step 5. Display the resultant linked Tist. The resultant linked list is pointed he pointer R

Algorithm for Polynomial Multiplication

1. Read the number of terms in the first polynomial

2. Read the coefficient and exponent of the first polynomial

3. Read the number of terms in the second polynomial

133

4. Read the coefficient and exponent of the second polynomial

5. if one of the list is empty then the nonempty linked list is added to the resultant linked list
Otherwise goto step 6.

6. for each term of the first list

134

multiply each term of the second linked list with a term of the first linked list

add the new term to the resultant polynomial

reposition the pointer to the starting of the second linked list

go to the next node
adds a term to the polynomial in the descending order of the exponent
Display the resultant linked list

Linked list implementation of stack

Instead of using array, we can also use linked list to implement stack. Linked list allocates the merfory
dynamically. However, time complexity in both the scenario is same for all the operations i.e.
push, pop and peek.

In linked list implementation of stack, the nodes are maintained non- contiguously in the memory.
Each node contains a pointer to its immediate successor node in the stack. Stack is said to be
overflown if the space left in the memory heap is not enough to create a node.

top —> NodeData X

—

Node Data Next

Node Data Next

—

Node Data Mext

Stack

The top most node in the stack always contains null in its address field. Lets discuss the way in wihjich,
each operation is performed in linked list implementation of stack.

Adding a node to the stack (Push operation)

Adding a node to the stack is referred to as push operation. Pushing an element to a stack in linked list
implementation is different from that of an array implementation. In order to push an element {nto
the stack, the following steps are involved.

1. Create a node first and allocate memory to it.

2. If the list is empty then the item is to be pushed as the start node of the list. This includes
assigning value to the data part of the node and assign null to the address part of the node.

If there are some nodes in the list already, then we have to add the new element in the beginnng
of the list (to not violate the property of the stack). For this purpose, assign the address of the
starting element to the address field of the new node and make the new node, the starting nodejjof
the list.

Time Complexity : o(1)

C implementation :

void push ()

{

int val;

struct node *ptr =(struct node*)malloc(sizeof(struct node)); if(ptr == NULL)

{

printf(*not able to push the element™);

¥

else

{
printf("Enter the value"); scanf(*'%d",&val); if(head==NULL)

{

ptr->val = val,

ptr -> next = NULL,; head=ptr;
}

else

{

ptr->val = val; ptr->next = head; head=ptr;

¥
printf("Item pushed");

¥
k

Deleting a node from the stack (POP operation)
Deleting a node from the top of stack is referred to

137

as pop operation. Deleting a node from the linked list

implementation of stack is different from that in the array implementation. In order to pop an elenjgnt
from the stack, we need to follow the following steps :

1. Check for the underflow condition: The underflow condition occurs when we try to pop fr¢Jm
an already empty stack. The stack will be empty if the head pointer of the list points to null.

2. Adjust the head pointer accordingly: In stack, the elements are popped only from one end,
therefore, the value stored in the head pointer must be deleted and the node must be freed. Thefnext
node of the head node now becomes the head node.

Time Complexity : o(n)
C implementation

void pop()

{

int item;

struct node *ptr;

if (head == NULL)

{

printf("Underflow");

¥

else

{
item = head->val; ptr = head,;

head = head->next; free(ptr);

printf("1tem popped");

Display the nodes (Traversing)

Displaying all the nodes of a stack needs traversing all the nodes of the linked list organized in the
form of stack. For this purpose, we need to follow the following steps.

3. Copy the head pointer into a temporary pointer.

4. Move the temporary pointer through all the nodes of the list and print the value field attached
every node.

Time Complexity : o(n)
C Implementation

void display()

{

inti;

struct node *ptr; ptr=head,;
if(ptr == NULL)

{

printf("Stack is empty\n");
¥

else

{
printf("Printing Stack elements \n"); while(ptr!=NULL)

{
printf("%d\n",ptr->val); ptr = ptr->next;

Linked List implementation of Queue

Due to the drawbacks discussed in the previous section of this tutorial, the array implementation
cannot be used for the large scale applications where the queues are implemented. One of the
alternative of array implementation is linked list implementation of queue.

The storage requirement of linked representation of a queue with n elements is o(n) while the time
requirement for operations is o(1).

In a linked queue, each node of the queue consists of two parts i.e. data part and the link part. Eac
element of the queue points to its immediate next element in the memory.

In the linked queue, there are two pointers maintained in the memory i.e. front pointer and rear pojnter.
The front pointer contains the address of the starting element of the queue while the rear pointdr
contains the address of the last element of the queue.

Insertion and deletions are performed at rear and front end respectively. If front and rear both are
NULL, it indicates that the queue is empty.

The linked representation of queue is shown in the following figure.

—{ 7

Linked Queue

Operation on Linked Queue

There are two basic operations which can be implemented on the linked queues. The operations arjg
Insertion and Deletion,

Insert operation

The insert operation append the queue by adding an element to the end of the queue. The new elerjent
will be the last element of the queue.

Firstly, allocate the memory for the new node ptr by using the following statement.
Ptr = (struct node *) malloc (sizeof(struct node));
There can be the two scenario of inserting this new node ptr into the linked queue.

In the first scenario, we insert element into an empty queue. In this case, the condition front = NULL
becomes true. Now, the new element will be added as the only element of the queue and the nggxt
pointer of front and rear pointer both, will point to NULL.

ptr -> data = item; if(front == NULL)

{

front = ptr; rear = ptr;

front -> next = NULL,; rear -> next = NULL,;
}

point to the newly added node ptr. We also need to make the next pointer of rear point to NULJL.
rear -> next = ptr; rear = ptr;

rear->next = NULL;

follows.
Algorithm
o Step 1: Allocate the space for the new node PTR
o Step 2: SET PTR -> DATA = VAL

In this way, the element is inserted into the queue. The algorithm and the C implementation is givgn as

o Step 3: IF FRONT = NULL SET FRONT = REAR =PTR
SET FRONT -> NEXT = REAR -> NEXT = NULL ELSE

SET REAR -> NEXT = PTR SET REAR =PTR
SET REAR -> NEXT = NULL [END OF IF]

o Step4: END

C Function

void insert(struct node *ptr, int item;)

{

ptr = (struct node *) malloc (sizeof(struct node)); if(ptr == NULL)

{
printf("\nOVERFLOW\n"); return;

¥

else

{

ptr -> data = item; if(front == NULL)
{

front = ptr; rear = ptr;

front -> next = NULL;

rear -> next = NULL,;

¥

else

{

rear -> next = ptr; rear = ptr;

rear->next = NULL;

Deletion

Deletion operation removes the element that is first inserted among all the queue elements. Firstlyjjwe
need to check either the list is empty or not. The condition front == NULL becomes true if theffist
IS empty, in this case , we simply write underflow on the console and make exit.

node pointed by the front pointer into the pointer ptr. Now, shift the front pointer, point to its rjext
node and free the node pointed by the node ptr. This is done by using the following statements

ptr = front;
front = front -> next; free(ptr);
The algorithm and C function is given as follows.

Algorithm

o Step 1: IF FRONT = NULL Write " Underflow "
Go to Step 5 [END OF IF]
o Step 2: SET PTR = FRONT

o Step 3: SET FRONT = FRONT -> NEXT
o Step4: FREE PTR
o Step5: END

C Function

void delete (struct node *ptr)

{

if(front == NULL)

{

printf(""\nUNDERFLOWA\n"); return;

¥

else

{

ptr = front;

front = front -> next; free(ptr);
}

¥

Memory management

Basic task of any program is to manipulate data.These data should be stored in memory during thejr
manipulation. There are two memory management schemes for the storage allocations of data:

Static storage management

1.
2. Dynamic storage management
2.

2.1 Static storage management In case of static storage management scheme, the net amount of
memory required for various data for a program is allocated before the starting of the executiofy of
the program.Once memory is allocated, it neither can be extended nor can be returned to the

memory bank for the use of other programs at the same time.

2.2 Dynamic storage management

e Dynamic storage management scheme allows the user to allocate and deallocate as per the
necessity during the execution of programs.

This dynamic memory management scheme is suitable in multiprogramming as well as singl{-
user environment where generally more than one program reside in the memory and their menjpry
requirement can be known only during their execution.

Operating systems (OS) generally provides the service of dynamic memory management. Th
data structure for implementing such a scheme is linked list.

Various principles on which the dynamic memory management scheme is based on

Allocation schemes: here we discuss how a request for a memory block will be serviced.

Fixed block allocation
Variable block allocation.
First fit and its variant, (ii) Next fit, (iii) Best fit, (iv) Worst fit

Deallocation schemes: here we discuss how to return a memory block to the memory bank
whenever it is no more required.

(zzzzz) = Random deallocation
(aaaaaa) Ordered deallocation.

5. Garbage collection: to maintain a memory bank so that it can be utilized efficiently.

2. Allocation schemes

1 Memory bank or pool of free storages is often a collection of non- contiguous blocks of memipry.

(1 Their linearity can be maintained by means of pointers between one block to another or in othfer
words, memory bank is a linked list where links are to maintain the adjacency of blocks.

Each node is of fixed size

1 Regarding the size of the blocks there are two practices: fixed block storage and variable blog
storage. Let us discuss each of them individually.

[2.1 Fixed Block Storage:

Here each block is of the same size.
1 The size is determined by the system manager (user).

[Here, the memory manager (a program of OS) maintains a pointer AVAIL which pointsja
list of non-contiguous memory blocks.

N A user program communicates with the memory manager by means of two functions
GETNODE(NODE) and RETURNNODE(ptr)

1 Procedure GETNODE(NODE)
Steps

4. Start

5. If (AVAIL = NULL) then

Print ""The memory is insufficient™

6. Else
ptr = AVAIL
AVAIL = AVAIL->LINK

Return(ptr)
7. EndIf
8. Stop

Whenever a memory block is no more required, it can be returned to the memory bank through a
procedure RETURNNODE()

Procedure RETURNNODE(PTR)

Steps

Start

ptrl = AVAIL

While (ptrl->LINK # NULL) do ptrl = ptr1->LINK
EndWhile

ptri1->LINK=PTR

ptr->LINK= NULL

© ® N O W oF W I O

Stop

Fixed block allocation is the simplest strategy. But the main drawback of this strategy is the
wastage of space.

For example, suppose each memory block is of size 1 K (1024 bytes); now for a request of
memory block, say, of size 1.1 K we have to avail 2 blocks (that is 2 K memory space) thus
wasting 0.9 K memory space.

3.2 Variable Block Storage

(1 Here, the memory manager (a program of OS) maintains a pointer AVAIL which points a lis{jof
non-contiguous memory blocks.

(1 To overcome the disadvantages of fixed block storage, we can maintain blocks of variable sizes,
instead of fixed size blocks.

1 Procedure GETNODE(NODE)

Steps

Start

If (AVAIL = NULL) then

Print ""Memory bank is insufficient™

Exit

EndIf

ptr = AVAIL

While (ptr->LINK #NULL) and (ptr->SIZE < SIZEOF(NODE)) do
ptrl = ptr

ptr = ptr->LINK

EndWhile

If (ptr->LINK = NULL) and (ptr->SIZE < SIZEOF(NODE)) then
Print "*Memory request is too large: Unable to serve™

Else

ptrl->LINK = ptr->LINK

7.
8.
1.
2.
3.
4.
5.
1.
2.
6.
7.
1.
8.
1.

0 2. Return(ptr)
9. EndIf 10.Stop
1 This procedure assumes that blocks of memory are stored in ascending order of their sizes.
1 Procedure RETURNNODE(PTR)
Steps
8. Start
9. ptrl=AVAIL
. While (ptrl->SIZE < ptr->SIZE) and (ptrl->LINK # NULL)) do
ptr2 = ptrl
ptrl = ptrl->LINK
. EndWhile

. ptr2->LINK = PTR
. PTR->LINK = ptrl
. Stop

The dynamic memory management system should provide the following services:

Searching the memory for a block of requested size and servicing the request (allocation)

Handling a free block when it is returned to the memory manager.

(f) Coalescing the smaller free blocks into larger block(s) (garbage collection and compaction).

3.2.1 Storage allocation strategies

1 (a) First-fit allocation, (b) Best-fit allocation, (c) Worst-fit allocation, (d) Next-fit allocation

[First-fit storage allocation:

This is the simplest storage allocation strategy.

[Here the list of available storages will be searched and as soon as a free storage block offsize

N will be found pointer of that block will be sent to the calling program after retaining the resifjue
space.

N For example, for a block of size 2 K, if the first-fit strategy found a block of 7 K, then ajjger
retaining a storage block of size 5 K, 2 K memory will be sent to the caller.

1 Leads to fast allocation of memory space.

(1 Leads to memory waste

Best-fit storage allocation

This strategy will not allocate a block of size > N, as it is found in first- fit method, instead wijll
continue searching to find a suitable block so that the block size is closer to the block size of

request.
Goal: find the smallest memory block into which the job will fit

Results in least wasted space.

Slower in making allocation

For example, for a request of 2 K, if the list contains the blocks of sizes, 1 K, 3K, 7 K, 2.5 KI5
K, then it will find the block of size 2.5 K as suitable block for allocation. From this block afte
retaining 0.5 K, pointer for 2 K block will be returned.

Worst-fit storage allocation

Slower in making allocation

Allocates the largest free available block to the new job
Opposite of best-fit

Best-fit finds a block which is small and nearest to the block size as 'requested, whereas, worlft-fit
strategy is a reverse of it. It allocates the largest block available in the available storage list.

The idea behind the worst-fit is to reduce the rate of production of small blocks which are quge
common when best-fit strategy is used for memory allocation.

Next-fit storage allocation

The idea behind the worst-fit is to reduce the rate of production of small blocks which alje
quite common when best-fit strategy is used for memory allocation.

Next-fit allocation strategy is a modification of first-fit strategy.

(1 Starts searching from last allocated block, for the next available block when a new job
arrives.

In case of first-fit strategy, searching will always occur from beginning of the free list
whereas in next-fit strategy, search begins where the last allocation has been done; in this
strategy, pointer to the free list is saved following an allocation and is used to begin for the
subsequent request.

The idea of this strategy is to reduce the search by avoiding examination of smaller blocks that,
in long run, tends to be created at the beginning of the free list as it happens in case of first-f

Module 4 Trees and Graphs

Trees, Binary Trees-Tree Operations, Binary Tree Representation, Tree Traversals, Binary
Search Trees- Binary Search Tree Operations Graphs, Representation of Graphs, Depth First
Search and Breadth First Search on Graphs, Applications of Graphs

10. The tree has one node called root. The tree originates from this, and

hence it does not have any parent.
11. Each node has one parent only but can have multiple children.

12. Each node is connected to its children via edge.

Following diagram explains various terminologies used in a tree structure.

Root

Parent Node

Sub-tree Leaf Node

Terminolo
gy

Root

Parent
Node

Child Node

Leaf

Edge

Siblings

Path /
Traversi

ng

Height of
Node

Levels of
node

Degree of
Node

Description

Root is a special node in a tree. The
entiretree originates from it. It
does not have a parent.

Parent node is an immediate
predecessor ofa node.

All immediate successors of a node
are itschildren.

Node which does not have any
child iscalled as leaf

Edge is a connection between one
node to another. It is a line
between two nodes or anode and a
leaf.

Nodes with the same parent are called
Siblings.

Path is a number of successive edges
fromsource node to destination
node.

Height of a node represents the
number of edges on the longest
path between that nodeand a leaf.

Level of a node represents the
generation ofa node. If the root
node is at level O, then itsnext
child node is at level 1, its
grandchild is at level 2, and so on

Degree of a node represents the
number ofchildren of a node.

Example From Diagram

Node A

Bisparentof D & E

D & E are children of B

H, I, J, F and G are leaf nodes

Line between A & B is edge

D & E are siblings

A — B - E - Jis path from nod
A toE

A, B, C, D & E can have
height. Height of A is no.
of edges betweenA and
H, as that is the longest
path,which is 3. Height of
Cisl

Level of H, | & J is 3. Level
of D,EF& Gis?2

Degree of Dis2and of Eis 1

152

Sub tree Descendants of a node represent Nodes D, H, I represent one
subtree. subtree.

Types of Trees
Types of trees depend on the number of children a node has. There are two majortree

types:

. General Tree: A tree in which there is no restriction on the number of children a

node has, is called a General tree. Examples are Family tree, Folder Structure.

« Binary Tree: In a Binary tree, every node can have at most 2 children, left and

right. Here, utmost means whether the node has 0 nodes, 1 node or 2 nodes.

153

(3 9
(8) 1)

Binary trees are further @ @ @ divided into many
types based on its application.

Full Binary Tree: If every node in a tree has either O or 2 children, thenthe tree is
called a full tree.
Perfect Binary tree: It is a binary tree in which all interior nodes have two children

and all leaves have the same depth or same level.

Binary Search Tree: It is a binary tree with binary search property. Binary search

property states that the value or key of the left node is less than its parent and value or

key of right node is greater than its parent. And this is true for all nodes.

Applications of trees
The following are the applications of trees:

Storing naturally hierarchical data: Trees are used to store the data in the
hierarchical structure. For example, the file system. The file system stored onthe disc
drive, the file and folder are in the form of the naturally hierarchical data and stored in
the form of trees.

Organize data: It is used to organize data for efficient insertion, deletion and
searching. For example, a binary tree has a logN time for searching an element.

Trie: It is a special kind of tree that is used to store the dictionary. It is a fastand

efficient way for dynamic spell checking.

Heap: It is also a tree data structure implemented using arrays. It is used to

implement priority queues.
B-Tree and B+Tree: B-Tree and B+Tree are the tree data structures used to
implement indexing in databases.

Routing table: The tree data structure is also used to store the data in routingtables in

the routers.

Implementation of Tree

The tree data structure can be created by creating the nodes dynamically with the help of

the pointers. The tree in the memory can be represented as shown below:

Left Data Right

A

N\

X| 6 IX X| E |[X] [X] F IX

The
above figure shows the representation of the tree data structure in the memory. In the
above structure, the node contains three fields. The second field stores the data;the

first field stores the address of the left child, and the third field stores the addressof the
right child.

In programming, the structure of a node can be defined as:

struct node

{

int data;

struct node *leftChild; struct node
*rightChild;

}

Binary Search Tree Basic Operations

The basic operations that can be performed on a binary search tree data structure,are the

following —

1 Insert — Inserts an element in a tree/create a tree.

] Search — Searches an element in a tree.

Insert Operation

The very first insertion creates the tree. Afterwards, whenever an element is to be
inserted, first locate its proper location. Start searching from the root node, then if the
data is less than the key value, search for the empty location in the left subtree and
insert the data. Otherwise, search for the empty location in the right subtree andinsert
the data.

Algorithm

Step 1: Start
Step 2:If root is NULL

then create root node
return

Step 3:If root exists then

compare the data with node.data

Step 4:while until insertion position is located

Step 4.1:1If data is greater than node.data

goto right subtree
Step 4.2:else

goto left subtree

Step 5:endwhile

Step

7: Stop

Program

void insert(int data) {

struct
struct
P

tempN
>|
>r

[Iif tre

root =
}else
curren

while

parent

/llgo to

curren

/linsern

parent

}
}

//go to

node *tempNode = (struct node*) malloc(sizeof(structnode));

node *current;struct node
arent;

lode->data = data; tempNode-
eftChild = NULL; tempNode-
ghtChild = NULL;

e is empty, create root nodeif(root == NULL) {
tempNode;

{
t = root;parent = NULL;

DA

= current;

left of the tree if(data < parent->data) {
t = current->leftChild,;

t to the left if(current == NULL) {
->leftChild = tempNode;return;

right of the treeelse {

current = current->rightChild;

/linsert to the rightif(current == NULL) {
parent->rightChild = tempNode;return;

}

}
}
}

Whenever an element is to be searched, start searching from the root node, then if the

data is less than the key value, search for the element in the left subtree. Otherwise,

search for the element in the right subtree. Follow the same algorithm for each node.

Algorithm

Step 1: Start

Step 2:If root.data is equal to search.data
return root

Step 3:else

while data not found

Step 3.1:1f data is greater than node.data
goto right subtree

Step 3.2:else

goto left subtree

Step 4:If data found

return node
endwhile

struct node* search(int data)

{

struct node *current = root;
printf ("Visiting elements:

") ;

while (current->data != data) {

printf ("$d ", current->data);

//go to left tree

if (current->data > data) {

current = current->leftChild;

}

//else go to right tree
else {

current = current->rightChild;

//not found
if (current == NULL) {

return NUTLT.:

Tree Traversals

Traversal is a process to visit all the nodes of a tree and may print their values too.

Because, all nodes are connected via edges (links) we always start from the root
(head) node. That is, we cannot randomly access a node in a tree. There are three

ways which we use to traverse a tree —

1 In-order Traversal
1 Pre-order Traversal

1 Post-order Traversal

In this traversal method, the left subtree is visited first, then the root and later the right

sub-tree. We should always remember that every node may represent a subtreeitself.

If a binary tree is traversed in-order, the output will produce sorted key values in an

ascending order.

Root

B C
1 B) B\t

Left Subtree Right Subtree

We start from A, and following in-order traversal, we move to its left subtree B. B isalso
traversed in-order. The process goes on until all the nodes are visited. The output of

inorder traversal of this tree will be —

D--B—-E—-A—-F—->C-—->G

Algorithm:

Step 1: Start
Step 2: Until all nodes are traversed Step 3:
Recursively traverse left subtree.

Step 4: Visit root node.

Step 5: Recursively traverse right subtree.Step 6:
Stop

Program:

void inorder_ traversal (struct node* root)
if (root != NULL) {

inorder traversal (root->leftChild);
printf ("%d ",root->data);
inorder traversal (root->rightChild) ;

{

Pre-order Traversal

In this traversal method, the root node is visited first, then the left subtree andfinally the

right subtree.

B C
A2y & o\ NS

Left Subtree Right Subtree

We start from A, and following pre-order traversal, we first visit A itself and then move
to its left subtree B. B is also traversed pre-order. The process goes on until all the

nodes are visited. The output of pre-order traversal of this tree will be —

A—->B—-D—-E—->C—-F->G

Algorithm:

Step 1: Start

Step 2: Until all nodes are traversedStep 3:
Visit root node.

Step 4: Recursively traverse left subtree. Step 5:
Recursively traverse right subtree.Step 6:
Stop

Program:

void pre_order traversal (struct node* root) {
if (root != NULL) {

printf ("$d ", root->data);
pre order traversal (root->leftChild);
pre order traversal (root->rightChild);

In this traversal method, the root node is visited last, hence the name. First we traverse

the left subtree, then the right subtree and finally the root node.

Root

A\

Iy AL,

C
1) o

Left Subtree Right Subtree

We start from A, and following Post-order traversal, we first visit the left subtree B. B
Is also traversed post-order. The process goes on until all the nodes are visited. The

output of post-order traversal of this tree will be —

DE—-B—->F->G—->C—oA
168

Algorithm
Step 1: Start
Step 2: Until all nodes are traversed Step 3:

Recursively traverse left subtree.

Step 4: Recursively traverse right subtree.Step 5:

Visit root node.
Step 6: Stop

Program:

void post_order traversal (struct node* root) ({
if (root != NULL) {

post order traversal (root->leftChild);
post order traversal (root->rightChild) ;
printf ("%d ", root->data);

GRAPH:

1 A graph can be defined as group of vertices and edges that are used to connectthese
vertices. A graph can be seen as a cyclic tree, where the vertices (Nodes) maintain any
complex relationship among them instead of having parent childrelationship.

1 Mathematical graphs can be represented in data structure. We can represent agraph
using an array of vertices and a two-dimensional array of edges.

= A graph can be directed or undirected. However, in an undirected graph, edgesare not
associated with the directions with them. An undirected graph is shownin the below
figure since its edges are not attached with any of the directions. If an edge exists
between vertex A and B then the vertices can be traversed from B to A as well as A to
B.

(A

._\.-)

Undirected Graph

In a directed graph, edges form an ordered pair. Edges represent a specific path from

some vertex A to another vertex B. Node A is called initial node

while node B is called terminal node. A directed graph is shown in thefollowing

figure.

Directed Graph

1 Before we proceed further, let's familiarize ourselves with some importantterms —
= Vertex — Each node of the graph is represented as a vertex.
Edge — Edge represents a path between two vertices or a line betweentwo vertices.

Adjacency — Two node or vertices are adjacent if they are connectedto each other

through an edge.
Path — Path represents a sequence of edges between the two vertices.

Closed Path - A path will be called as closed path if the initial node issame as

terminal node. A path will be closed path if Vo=Vy.

Simple Path - If all the nodes of the graph are distinct with anexception

Vo=Vh, then such path P is called as closed simple path.

Cycle - A cycle can be defined as the path which has no repeated edgesor vertices

except the first and last vertices.

Connected Graph - A connected graph is the one in which some pathexists between

every two vertices (u, v) in V. There are no isolated nodes in connected graph.

Weighted Graph - In a weighted graph, each edge is assigned with some data such
as length or weight. The weight of an edge e can be given as w(e) which must be a

positive (+) value indicating the cost oftraversing the edge.

Degree of the Node - A degree of a node is the number of edges that are connected

with that node. A node with degree 0O is called as isolatednode.

Application of Graph in Data Structure

Graphs data structure have a variety of applications. Some of the most popular

applications are:

Helps to define the flow of computation of software programs.

Used in Google maps for building transportation systems. In google maps, the

intersection of two or more roads represents the node while the road connecting two
nodes represents an edge. Google maps algorithm uses graphsto calculate the shortest
distance between two vertices.

Used in social networks such as Facebook and Linkedin.

Operating Systems use Resource Allocation Graph where every process and resource
acts as a node while edges are drawn from resources to the allocatedprocess.

Used in the world wide web where the web pages represent the nodes.

https://www.naukri.com/learning/what-is-operating-system-st617

1 Blockchains also use graphs. The nodes are blocks that store manytransactions
while the edges connect subsequent blocks.

1 Used in modeling data.

Breadth First Search in Data Structure

Traversal means to visit each node of a graph. For graphs, there are two types of
traversals: Depth First traversal and Breadth-First traversal. In this article, we are

going to study Breadth-first traversal or BFS in detail.

What is Breadth First Search?

Breadth First Search is a traversal technique in which we traverse all the nodes of the
graph in a breadth-wise motion. In BFS, we traverse one level at a time and thenjump

to the next level.

In a graph, the traversal can start from any node and cover all the nodes level-wise. The

BFS algorithm makes use of the queue data structure for implementation. In BFS, we

always reach the final goal state (which was not always the case for DFS).

Algorithm for BFS:

Step 1: Choose any one node randomly, to start traversing.Step 2:
Visit its adjacent unvisited node.
Step 3: Mark it as visited in the boolean array and display it.Step 4:
Insert the visited node into the queue.
Step 5: If there is no adjacent node, remove the first node from the queue.Step 6:

Repeat the above steps until the queue is empty.

https://www.naukri.com/learning/what-is-blockchain-st561

Working of Breadth First Search:

Consider the following graph having 8 nodes named as A, B, C, D, E, F, G and H asshown:

A B C D E F G H
visiced: - [T G SN I R I I N

Queue: Empty

Initially, the queue will be empty.
Let us start traversing the graph from node A. Once we visit node A, we mark it asvisited

and also place it inside the queue as shown:

A B C D E F G H
Lol 1 | 0o/ ojojofo[o0] 0]

Queue: A

The next step is to traverse its adjacent nodes i.e. B and C and place them inside thequeue.
When we place the adjacent node of A in the queue, we will remove A fromthe queue

and display it in the output array as shown:

N A

7
o d Vet
: 24 W
W N\
[+) (H)
e TR - DI

Queue: B,C

Queue: Empty
Output: A

Output: A

Next, we don’t have any more adjacent nodes for A. therefore, we will remove node B

from the queue and place its adjacent nodes into the queue. Similarly, we will traverse

the nodes of C and put them into the queue

0
0/ /\G

Ty
¢

B: & D E F 3 H A B C D E F G H

Queue: DEFG

Queue: CD.E
Output: AB Qutput: A,B,C

The next adjacent node is node H. thus, we will traverse that as well and place it in the
queue. Once all the nodes have entered the queue, we will startremoving them from

the queue and putting them into the output array.

/@\
o/ \o/

E F G H G H

Queue: EFGH Queue: F.GH
Qutput: ABCD OQOutput: AB,C.D.E

Thus, slowly the queue starts decreasing in size and the output array will be fullas shown:

/’\ o/"'&

a8k

‘oo

G H G _H

Queue: GH Queue: H
Qutput: AB,CD.EF Output: A,B,.C.D.EF

A G H
wseo. RN

Queue: Empty
Output: A,B,C,D,E,F,G,H

177

Complexity of BFS

Time complexity: Since we are visiting all the nodes exactly once, therefore, the time
complexity is O(V+E). Here, O(E) may vary between O(1) and O(V2). Thus, in the
worst case, the time complexity of BFS is O(V2).

Space complexity: The space complexity of the BFS algorithm is O(V) where V denotes

vertices/nodes of the graph.

Applications of Breadth First Search

« To find the shortest path between two edges when the path length is equivalentto the
number of edges.
To check whether a graph is bipartite or not
To copy garbage collection by Cheney’s algorithm
Used in unweighted graphs to find the minimum cost spanning tree
To form peer-to-peer network connections

To find neighboring locations in the GPS navigation system

To detect cycle in an undirected graph

To broadcast packets in a network
To find all the nodes within one connected component in an otherwise

disconnected graph

Depth First Search in Data Structure

Depth First Search is a traversal technique in which we follow a depth-wise motionto

traverse all the nodes. This technique is based on backtracking.

What is DFS:
Depth first search is a recursive technique to traverse all the nodes of a graph. It makes

use of the stack data structure for traversing and remembering the nodes.

DFS follows the backtracking approach i.e. whenever there are no more nodes in thecurrent

path, it goes back to the initial node and starts traversing the next available path.

While using the stack, we first choose the initial node and push all its adjacent nodesinto
the stack. To visit a node, we pop a node from the stack and push all its adjacentnodes
to the stack.

This goes on until all the nodes are popped out i.e. the stack is empty. In the whole

process, we need to make sure that we don’t visit the same node more than once,

especially if the cycle exists. The output of DFS is always in the form of a spanning

tree.

Algorithm:

Step 1: Algorithm DFS(vertex v)Step 2:
visited[v] =1

Step 3: for all nodes ‘w’ adjacent to v:
if(visited[w] == 0):

DFS(w)

Step 4: End for loopStep 5:
End DFS

Working of DFS:

Before looking at the working of the algorithm, let us first understand the followingterms:

« Visit: It means we reached the node or we are reaching the node.
. Explore: It means processing every child of the node.

« Discovery: This term is used when we visit a node for the first time.

In DFS, we can take any node as the initial node and start traversing its adjacent nodes.

Let us see the working of DFS with the help of the following example:

&

Let’s start with node A. once we reach the child of A, we start exploring the grandchild of

A i.e. the child of B and so on. In this manner, we will traverse the whole graph.

We go from A to B to D to H. when we reach H, we have 3 choices: E, F, G. We canchoose

to go with any of them. Let us go with F. from F, we got to C as C is the onlyunvisited

node of F.

Similarly, from C we will visit G. Now G does not have any unvisited node. Therefore, G

is the dead node and we will backtrack from here.

Thus, the spanning tree formed by following this path will be:

The push and pop operations in the stack will be:

Push(A) Push(B)
— —

Push(F) Push(C) - Push(G)
—_— e (

o)
CeJ)
Ca)

3

Push(E)

>

Empty

Thus, the path followed is A—B—D—H—F—C—G—E. We need to note that therecould

multiple paths for the same graph depending upon which node is traversed first.

Complexity Analysis for DFS:

Time complexity: We need to traverse the whole graph while implementing DFS.

therefore, its time complexity is O(V + E).

Space complexity: The algorithm makes use of an extra array. Therefore, in the worst

case, the space complexity is O(V).

Applications of DFS:

Finding the number of connected components in a disconnected graph
Detecting a cycle in a graph

Finding all the articulation points in a graph

Finding whether a graph is biconnected or not

For finding strongly connected components in a graph

To find bridges in a graph

For topological sorting

To solve puzzles with only one solution (Eg- mazes)

Module 5 Sorting and Hashing

Division, Folding, Digit Analysis

SORTING TECHNIQUES:

« Sorting refers to the operation or technique of arranging and rearranging setsof data
in some specific order. A collection of records called a list where everyrecord has one

or more fields.

Sorting is the operation performed to arrange the records of a table or list in some
order according to some specific ordering criterion. Sorting is performedaccording to

some key value of each record.

Complexity of Sorting Algorithm

« The complexity of sorting algorithm calculates the running time of a functionin which

'n' number of items are to be sorted. The choice for which sorting method is suitable
for a problem depends on several dependency configurations for different problems.

The most noteworthy of these considerations are:

The length of time spent by the programmer in programming a specific sorting

program
Amount of machine time necessary for running the program
The amount of memory necessary for running the program

Various sorting techniques are analyzed in various cases and named these cases as
184

Sorting Techniques — Selection Sort, Insertion Sort, Quick Sort, Merge Sort and Heap Sort Hashiijg-
Hashing Techniques, Collision Resolution, Overflow handling, Hashing functions — Mid squalf

follows:

Best case

Worst case

* Average case

SELECTION SORT
Selection sort is a simple sorting algorithm.

This sorting algorithm is an in-place comparison-based algorithm in which thelist is
divided into two parts, the sorted part at the left end and the unsorted part at the right

end.
Initially, the sorted part is empty and the unsorted part is the entire list.

The smallest element is selected from the unsorted array and swapped withthe

leftmost element, and that element becomes a part of the sorted array.
This process continues moving unsorted array boundary by one element to theright.

This algorithm is not suitable for large data sets as its average and worst case

complexities are of O(n?), where n is the number of items.

Consider the following

143 27 1038] 10 a2 [aa

For the first position in the sorted list, the whole list is scanned sequentially. The first
position where 14 is stored presently, we search the whole list and find that 10 is the

lowest value.

4[58 27 [0[89] 42][ae

So we replace 14 with 10. After one iteration 10, which happens to be the
minimum value in the list, appears in the first position of the sorted list.

10 [58 [z e 38 10 JL 42)

For the second position, where 33 is residing, we start scanning the rest of thelist in a
linear manner.

’, " ’ l - [’ -~] ‘ > ’ ‘ . ’ ’ . ‘ ‘ - ' ’ » ’

We find that 14 is the second lowest value in the list and it should appear atthe
second place. We swap these values.

110 (| 33 || 27 || 14 || 35 || 19 || 42 || 44 |

After two iterations, two least values are positioned at the beginning in asorted
manner.

o (4] =] =0 {2)10] 2)«

The scenario will perform as follows:

Program for selection sort

#include <stdio.h>int
main()

{

int arr[10]={6,12,0,18,11,99,55,45,34,2}:

int n=10;

int i, j, position, temp; for (i=0; i< (n
-1); i+4)

{

position = i;

for(j=i+1;j<n;j++)

{

if (arr[position] > arr[j])position = j;

by

if (position I=1)

{

temp = arrfi];

arr[i] = arr[position];arr[position] = temp;
by

b

for (I=0;1<n;i++)

printf("%d\t", arr[i]);return O;
}

Time Complexity

Case Time Complexity

Best Case O(n?)

Average Case 0O(n?)

Worst Case O(n?)

Best Case Complexity - It occurs when there is no sorting required, i.e. the array is

already sorted. The best-case time complexity of selection sortis O(n?).

Average Case Complexity - It occurs when the array elements are in jumbled order
that is not properly ascending and not properly descending. The average case time

complexity of selection sort is O(n?).

Worst Case Complexity - It occurs when the array elements are required to be
sorted in reverse order. That means suppose you have to sort the array elements in
ascending order, but its elements are in descending order. The worst-case time

complexity of selection sort is O(n?).

INSERTION SORT
Insertion sort works similar to the sorting of playing cards in hands.

It is assumed that the first card is already sorted in the card game, and then weselect
an unsorted card.

If the selected unsorted card is greater than the first card, it will be placed atthe right

side; otherwise, it will be placed at the left side.
Similarly, all unsorted cards are taken and put in their exact place.
The same approach is applied in insertion sort.

The idea behind the insertion sort is that first take one element, iterate it through the
sorted array.

Although it is simple to use, it is not appropriate for large data sets as the time
complexity of insertion sort in the average case and worst case is O(n?), wheren is the

number of items.

Insertion sort is less efficient than the other sorting algorithms like heap sort, quick

sort, merge sort, etc.
Insertion sort has various advantages such as —
Simple implementation
Efficient for small data sets

Adaptive, i.e., itis appropriate for data sets that are already substantiallysorted.

Working of Insertion sort Algorithm

Let the elements of array are —

12|31 |25 32

Initially, the first two elements are compared in insertion sort.

12 (31|25 |8| 32

Here, 31 is greater than 12. That means both elements are already in ascendingorder.
So, for now, 12 is stored in a sorted sub-array.

2 31 | 25 32T

Now, move to the next two elements and compare them.

12131|25|8| 32

2 ESDE

Here, 25 is smaller than 31. So, 31 is not at correct position. Now, swap 31 with
25. Along with swapping, insertion sort will also check it with all elements in thesorted

array.
192

For now, the sorted array has only one element, i.e. 12. So, 25 is greater than 12.Hence,
the sorted array remains sorted after swapping.

12 (25| 31

Now, two elements in the sorted array are 12 and 25. Move forward to the nextelements
that are 31 and 8.

1212531 |8

12]25[31] 8

Both 31 and 8 are not sorted. So, swap them.

After swapping, elements 25 and 8 are unsorted.

So, swap them.

Now, elements 12 and 8 are unsorted.

T

So, swap them too.

8 112|25|31|32|17

Now, the sorted array has three items that are 8, 12 and 25. Move to the next itemsthat are
31 and 32.

SU12125 1 31132 17

Hence, they are already sorted. Now, the sorted array includes 8, 12, 25 and 31.

SEEE2 PSS 32 | 17

Move to the next elements that are 32 and 17

17 is smaller than 32. So, swap them.

12|25 |31 | 17| 32

1225 52

Swapping makes 31 and 17 unsorted. So, swap them too.

8 512 125 72| 31

8 | 12 | R 31

Now, swapping makes 25 and 17 unsorted. So, perform swapping again.

8 12|17 |25(31|32

Now, the array is completely sorted.

Algorithm

The simple steps of achieving the insertion sort are listed as follows -

Step 1 - If the element is the first element, assume that it is already sorted. Returnl.
Step2 - Pick the next element, and store it separately in a key. Step3 - Now,
compare the key with all elements in the sorted array.

Step 4 - If the element in the sorted array is smaller than the current element, thenmove to

the next element. Else, shift greater elements in the array towards the right.

Step 5 - Insert the value.

Step 6 - Repeat until the array is sorted.

Program #include<stdio.h>int

main()

{

/* Here i & j for loop counters, temp for swapping,count for

total number of elements, number[] to
* store the input numbers in array. You can increase
* or decrease the size of number array as per requirement

*/

int i, j, count, temp, number[25];

printf(""How many numbers u are going to enter?: *);

scanf("%d",&count);

printf("Enter %d elements: ", count);

Il This loop would store the input numbers in array
for(i=0;i<count;i++) scanf("%d",&number[i]);

/I Implementation of insertion sort algorithmfor(i=1;i<count;i++)

{

temp=number(i];j=i-1;
while((temp<number(j])&&j>=0))
{

number[j+1]=number[j];j=j-1;

¥

number[j+1]=temp;

¥

printf("Order of Sorted elements: ");

for(i=0;i<count;i++)
printf("* %d",number|[i]);return O;
¥

Time Complexity

Case Time Complexity
Best Case O(n)

Average Case Oo(n?)

Worst Case o(n?)

0 Best Case Complexity - It occurs when there is no sorting required, i.e. the array is

already sorted. The best-case time complexity of insertion sort is O(n).

Average Case Complexity - It occurs when the array elements are in jumbledorder

that is not properly ascending and not properly descending. The average case time

complexity of insertion sort is O(n?).

Worst Case Complexity - It occurs when the array elements are required to be
sorted in reverse order. That means suppose you have to sort the array elements in
ascending order, but its elements are in descending order. The worst-case time

complexity of insertion sort is O(n?).

QUICK SORT

* Quicksort is the widely used sorting algorithm that makes n log n comparisons in

average case for sorting an array of n elements.
It is a faster and highly efficient sorting algorithm.
This algorithm follows the divide and conquer approach.

Divide and conquer is a technique of breaking down the algorithms into
subproblems, then solving the subproblems, and combining the results back together

to solve the original problem.

Divide: In Divide, first pick a pivot element. After that, partition or rearrange the
array into two sub-arrays such that each element in the left sub-array is less than or
equal to the pivot element and each element in the right sub-arrayis larger than the

pivot element.
Conquer: Recursively, sort two subarrays with Quicksort

Quicksort picks an element as pivot, and then it partitions the given array around the
picked pivot element.

In quick sort, a large array is divided into two arrays in which one holds valuesthat are
smaller than the specified value (Pivot), and another array holds the values that are
greater than the pivot.

After that, left and right sub-arrays are also partitioned using the sameapproach. It

will continue until the single element remains in the sub-array.

Quick Sort

Choosing the pivot

» Picking a good pivot is necessary for the fast implementation of quicksort. However,

it is typical to determine a good pivot. Some of the ways of choosinga pivot are as

follows -
Pivot can be random, i.e. select the random pivot from the given array.

Pivot can either be the rightmost element of the leftmost element of thegiven array.

Select median as the pivot element.

Algorithm

Step 1: Start

Step 2: Consider first element as a pivot element Step 3:
Initialize ‘i’ to low index, ‘j’ to high indexStep 4: Repeat
the following steps until i<j

Step 4.1: Keep on incrementing ‘i‘while a[i] <=pivotStep 4.2: Keep on
decrementing ‘j” while a[j]>pivot Step 4.3: if i<j then swap (a[i],
a[jl)

Step 5: If i>] then swap (a[j], pivot), j is the position of pivotStep 6: Stop

Program

#include<stdio.h>

void quicksort(int number[25],int first,int last)

{

int i, j, pivot, temp;

if(first<last)
{
pivot=first;i=first;
j=last;

while(i<j)

{

while(number[i]<=number[pivot]&&i<last)i++;

while(number[j]>number|[pivot])j--;

if(i<j)

{

temp=number[i]; number[i]=number]j];
number[j]=temp;

}

by

temp=number[pivot];
number[pivot]=number[j];
number[j]=temp;
quicksort(number,first,j-1);
quicksort(number,j+1,last);

by

¥

int main()

{

int i, count, number[25];

printf("How many elements are u going to enter?: ");

scanf("%d",&count);

printf("Enter %d elements: ', count);
for(i=0;i<count;i++)
scanf("%d",&number[i]);
quicksort(number,0,count-1);
printf("Order of Sorted elements: *);
for(i=0;i<count;i++)

printf(" %d",numberl[i]);return

0; }

Time Complexity

Case Time Complexity
Best Case O(n*logn)
Average Case O(n*logn)

Worst Case O(n?)

0 Best Case Complexity - In Quicksort, the best-case occurs when the pivot element

is the middle element or near to the middle element. The best-case time complexity of

quicksort is O(n*logn).

0]

Average Case Complexity - It occurs when the array elements are in jumbledorder
that is not properly ascending and not properly descending. The average case time
complexity of quicksort is O(n*logn).

Worst Case Complexity - In quick sort, worst case occurs when the pivot element is
either greatest or smallest element. Suppose, if the pivot element is always the last

element of the array, the worst case would occur when the given array is sorted already

in ascending or descending order. The worst-case time complexity of quicksort is
O(n?).

MERGE SORT

[]

Merge sort is similar to the quick sort algorithm as it uses the divide and conquer
approach to sort the elements.

It is one of the most popular and efficient sorting algorithm. It divides the given list
into two equal halves, calls itself for the two halves and then mergesthe two sorted
halves.

We have to define the merge() function to perform the merging.

The sub-lists are divided again and again into halves until the list cannot be divided
further.

Then we combine the pair of one element lists into two-element lists, sortingthem in

the process.

1 The sorted two-element pairs is merged into the four-element lists, and so onuntil we

get the sorted list.

Working of Merge Sort

To understand the working of the merge sort algorithm, let's take an unsorted array. It will

be easier to understand the merge sort via an example.

Let the elements of array are -

According to the merge sort, first divide the given array into two equal halves. Mergesort

keeps dividing the list into equal parts until it cannot be further divided.

As there are eight elements in the given array, so it is divided into two arrays of size4.

Now, again divide these two arrays into halves. As they are of size 4, so divide theminto new

arrays of size 2.

Now, again divide these arrays to get the atomic value that cannot be further divided.

Now, combine them in the same manner they were broken
In combining, first compare the element of each array and then combine them into

another array in sorted order.

So, first compare 12 and 31, both are in sorted positions. Then compare 25 and 8, and in

the list of two values, put 8 first followed by 25. Then compare 32 and 17, sort them

and put 17 first followed by 32. After that, compare 40 and 42, and place them

sequentially.

In the next iteration of combining, now compare the arrays with two data values andmerge

them into an array of found values in sorted order.

Now, there is a final merging of the arrays. After the final merging of above arrays,the

array will look like -

Now, the array is completely sorted.

Program

mergesort(arr[], I, r)

{
if(1<r)

{
m=(l+r)/2;

mergesort(arr,l,
m);
mergesort(arr,
m+1,r);
merge(arr,l,m,r

);

merge(arr,l,m,r)

{

int i=1,j=m+1,k=1; int temp(];
while(i<=m&&j<=r)

{

if(arr[i]J<=arr[j])

{

temp[k]=arr[i]
{Lay
k++:

temp[k]=arr[j]
g+
k++:

while(i<=m)

{

temp[k]=arr[i];i++;

while(j<=r)

{

temp[k]=arr[j];j++;
K++;

}

for(int p=I;p<=r;p++)
{

arr[p]=temp[p];

}

}

#include<stdio.h>int
main()

{

int arr[],l,r,n,i;

printf(“Enter the number of elements:”);
scanf(“%d”,&n);

printf(“Enter the elements:”)
for(i=0;i<n;i++)

{

scanf(“%d”,&arr([1]);

}1=0;

r=n-1;

mergesort(arr[],1,r);

}

Time Complexity

Case Time Complexity
Best Case O(n*logn)
Average Case O(n*logn)

Worst Case O(n*logn)

0 Best Case Complexity - It occurs when there is no sorting required, i.e. the array is

already sorted. The best-case time complexity of merge sortis O(n*logn).

Average Case Complexity - It occurs when the array elements are in jumbled order
that is not properly ascending and not properly descending. The average case time
complexity of merge sort is O(n*logn).

Worst Case Complexity - It occurs when the array elements are required to be

sorted in reverse order. That means suppose you have to sort the array

elements in ascending order, but its elements are in descending order. Theworst-case

time complexity of merge sort is O(n*logn).

HEAP SORT

1 Heap sort processes the elements by creating the min-heap or max-heap using the
elements of the given array. Min-heap or max-heap represents the orderingof array in
which the root element represents the minimum or maximum element of the array.

Heap sort basically recursively performs two main operations -

Build a heap H, using the elements of array.

Repeatedly delete the root element of the heap formed in 1 phase.

A heap is a complete binary tree, and the binary tree is a tree in which the node can
have the utmost two children. A complete binary tree is a binary treein which all the
levels except the last level, i.e., leaf node, should be completely filled, and all the
nodes should be left-justified.

There are two variants of a heap: max-heap and min-heap. The heap properties
change a bit with each variant.

According to the heap property, the key or value of each node in a heap is
always greater than its children nodes, and the key or value of the rootnode is

always the largest in the heap tree.

(1 The heap property for min-heap states that the value or key of each child node is
always greater than its parent node, and the value of the root nodeis always the

smallest in the heap.

Working of Heap sort Algorithm

In heap sort, basically, there are two phases involved in the sorting of elements. Byusing the

heap sort algorithm, they are as follows -

0 The first step includes the creation of a heap by adjusting the elements of thearray.

0 After the creation of heap, now remove the root element of the heap repeatedly by
shifting it to the end of the array, and then store the heap structure with theremaining

elements.

Let’s take an example:

81 1 89| 9|11 |14 | 76| 54 | 22

First, we have to construct a heap from the given array and convert it into max heap.

(81)
@ o Heapify

Max Heap

After converting the given heap into max heap, the array elements are -

89 (81|76 | 22|14 | 9 | 54| 1

Next, we have to delete the root element (89) from the max heap. To delete this node, we

have to swap it with the last node, i.e. (11). After deleting the root element, we again

have to heapify it to convert it into max heap.

() D
@ @ Heapify: @
@) (4 (©) ™ @ (@ &

Heap after deleting 89 Max Heap

After swapping the array element 89 with 11, and converting the heap into max- heap, the

elements of array are -

81 122|176 | 11 | 14 54 | 89

In the next step, again, we have to delete the root element (81) from the max heap. To
delete this node, we have to swap it with the last node, i.e. (54). After deleting the root

element, we again have to heapify it to convert it into max heap.

(54 (78
@ @ Heapify @ @
OXORO W @ ©

Heap after deleting 81 Max Heap

After swapping the array element 81 with 54 and converting the heap into max-heap, the

elements of array are —

76 | 22

In the next step, we have to delete the root element (76) from the max heap again. To
delete this node, we have to swap it with the last node, i.e. (9). After deleting theroot

element, we again have to heapify it to convert it into max heap.

e (54
@ @ Heapify , @ o
@ ORO

Heap after deleting 76 Max Heap

After swapping the array element 76 with 9 and converting the heap into max-heap, the

elements of array are —

54 | 22

In the next step, again we have to delete the root element (54) from the max heap. To

delete this node, we have to swap it with the last node, i.e. (14). After deleting the root

element, we again have to heapify it to convert it into max heap.

(14)
@ o Heapify

Heap after deleting 54 Max Heap

After swapping the array element 54 with 14 and converting the heap into max-heap, the

elements of array are —

22

In the next step, again we have to delete the root element (22) from the max heap. To
delete this node, we have to swap it with the last node, i.e. (11). After deleting the root

element, we again have to heapify it to convert it into max heap.
215

() (14)
@ o Heapify , o o

Heap after deleting Max Heap

After swapping the array element 22 with 11 and converting the heap into max-heap, the

elements of array are -

14

In the next step, again we have to delete the root element (14) from the max heap. To
delete this node, we have to swap it with the last node, i.e. (9). After deleting theroot

element, we again have to heapify it to convert it into max heap.

(2 O
@

Heap after deleting 14 Max Heap

After swapping the array element 14 with 9 and converting the heap into max-heap, the

elements of array are —

14| 22 | 54 | 76 | 81 | 89

In the next step, again we have to delete the root element (11) from the max heap. To
delete this node, we have to swap it with the last node, i.e. (9). After deleting theroot

element, we again have to heapify it to convert it into max heap.

@ . @
>

Heap after deleting 11 Max Heap

After swapping the array element 11 with 9, the elements of array are —

M| 14| 22 | 54 | 76 | 81

Now, heap has only one element left. After deleting it, heap will be empty.

@ Remove 9
»

After completion of sorting, the array elements are -

14

Now, the array is completely sorted.

Algorithm

Step 1 - Start

Step 2 - Construct a Binary Tree with given list of Elements.Step 3 -
Transform the Binary Tree into Max Heap.

Step 4 - Delete the root element from Max Heap using Heapify method.Step 5 -
Put the deleted element into the Sorted list.

Step 6 - Repeat the same until Max Heap becomes empty.Step 7 -
Display the sorted list

Step 8 — Stop

Time Complexity

Case Time Complexity

Best Case O(n logn)

Average Case O(n log n)

Worst Case O(n log n)

0 Best Case Complexity - It occurs when there is no sorting required, i.e. the array is

already sorted. The best-case time complexity of heap sort is O(n logn).

219

0 Average Case Complexity - It occurs when the array elements are in jumbledorder

that is not properly ascending and not properly descending. The average case time
complexity of heap sort is O(n log n).

Worst Case Complexity - It occurs when the array elements are required to be
sorted in reverse order. That means suppose you have to sort the array elements in
ascending order, but its elements are in descending order. The worst-case time

complexity of heap sort is O(n log n).

Program

#include <stdio.h>
/* function to heapify a subtree. Here 'i' is the

index of root node in array a[], and 'n" is the size of heap. */
void heapify(int a[], int n, int i)

{

int largest = i; // Initialize largest as rootint
left =2 * i+ 1, // left child

intright =2 * i+ 2; // right child
/I left child is larger than root

if (left < n && a[left] > a[largest])
largest = left;

/1 right child is larger than root

iIf (right < n && a[right] > a[largest])
largest = right;

I/ If root is not largestif
(largest I=11) {

Il swap a[i] with a[largest]int
temp = a[i];

a[i] = a[largest];
a[largest] = temp;

heapify(a, n, largest);
}
}

/*Function to implement the heap sort*/
void heapSort(int a[], int n)

{

for (inti=n/2-1;i>=0;i--)
heapify(a, n, i);

// One by one extract an element from heapfor
(inti=n-1;i>=0;i-){

/* Move current root element to end*/

I/ swap a[0] with a[i]int
temp = a[0];

a[0] = a[i]; a[i] =

temp;

heapify(a, i, 0);
}
}

/* function to print the array elements */
void printArr(int arr[], int n)

{
for (inti=0;i<n; ++i)
{

printf("%d", arr[i]);
printf(" ");

¥

int main()
{
int a[] = {48, 10, 23, 43, 28, 26, 1},

int n = sizeof(a) / sizeof(a[0]);

printf("Before sorting array elements are - \n");

printArr(a, n);
heapSort(a, n);

printf("\nAfter sorting array elements are - \n");
printArr(a, n);

return O;

¥

HASHING

(1 Hashing is an important data structure designed to solve the problem of efficiently

finding and storing data in an array.

For example, if you have a list of 20000 numbers, and you have given a number to
search in that list- you will scan each number in the list until you find a match.

It requires a significant amount of your time to search in the entire list and locate that
specific number.

This manual process of scanning is not only time-consuming but inefficient too.

With hashing in the data structure, you can narrow down the search and find the

number within seconds.

What is Hashing in Data Structure?
(1 Hashing in the data structure is a technique of mapping a large chunk of datainto

small tables using a hashing function.

(1 Itisalso known as the message digest function. It is a technique that uniquely

identifies a specific item from a collection of similar items.

https://www.upgrad.com/blog/data-structure-project-ideas-beginners/
https://www.upgrad.com/blog/graphs-in-data-structure/

It uses hash tables to store the data in an array format. Each value in the arrayhas
assigned a unique index number.

Hash tables use a technique to generate these unique index numbers for each value
stored in an array format. This technique is called the hash technique.

You only need to find the index of the desired item, rather than finding the data.

With indexing, you can quickly scan the entire list and retrieve the item you wish.

Indexing also helps in inserting operations when you need to insert data at a specific

location. No matter how big or small the table is, you can update andretrieve data
within seconds.

Hashing in a data structure is a two-step process.

The hash function converts the item into a small integer or hash value. This integer is
used as an index to store the original data.

0 It stores the data in a hash table. You can use a hash key to locate dataquickly.

Hash Function

(1 The hash function in a data structure maps arbitrary size of data to fixed-sizeddata.

[1 It returns the following values: a small integer value (also known as hash
value), hash codes, and hash sums.

1 The has function must satisfy the following requirements:

0 A good hash function is easy to compute.

0 A good hash function never gets stuck in clustering and distributeskeys evenly
across the hash table.

0 A good hash function avoids collision when two elements or itemsget assigned to
the same hash value.

Hash Table

1 Hash table is one of the most important data structures that uses a special function
known as a hash function that maps a given value with a key to accessthe elements
faster.

A Hash table is a data structure that stores some information, and the information has
basically two main components, i.e., key and value.

The hash table can be implemented with the help of an associative array.

The efficiency of mapping depends upon the efficiency of the hash function used for
mapping.

Drawback of Hash function is that hash function assigns each value with a unique
key. Sometimes hash table uses an imperfect hash function that causesa collision

because the hash function generates the same key of two differentvalues.

Hash Value

Key —}m —»-Hash Value

Actual Data to be store

Key 4:\

Actual Data stored

There are three ways of calculating the hash function:
Division method

Folding method

Mid square method

[0 When the two different values have the same value, then the problem occurs
between the two values, known as a collision.

1 For example, if the key value is 6 and the size of the hash table is 10. When we apply
the hash function to key 6 then the index would be:

h(6) = 6%10 =16

The index is 6 at which the value is stored.

1 In the above example, the value is stored at index 6. If the key value is 26, then the
index would be:

h(26) = 26%10 = 6

1 Therefore, two values are stored at the same index, i.e., 6, and this leads to thecollision

problem. To resolve these collisions, we have some techniques known as collision

techniques.

1 The following are the collision techniques:

0 Open Hashing: Itis also known as closed addressing.

0 Closed Hashing: It is also known as open addressing.

Open Hashing

1 In Open Hashing, one of the methods used to resolve the collision is knownas a

chaining method.

Collision Resolution by Chaining

\\

u
(universe of keys)

—_—
E—
> E—
- >

\

(1 Let's first understand the chaining to resolve the collision.

Suppose we have a list of key values

A=32096,11,13,7, 12 where m=10, and h(k) = 2k+3
In this case, we cannot directly use h(k) = ki/m as h(k) = 2k+3
1 The index of key value 3 is: index =

h(3) = (2(3)+3)%10 =9

The value 3 would be stored at the index 9.

(1 The index of key value 2 is:

index = h(2) = (2(2)+3)%10 =7

The value 2 would be stored at the index 7.

(1 The index of key value 9 is: index =
h(9) = (2(9)+3)%10=1

The value 9 would be stored at the index 1.

(1 The index of key value 6 is: index =
h(6) = (2(6)+3)%10 =5

The value 6 would be stored at the index 5.

(1 The index of key value 11 is: index =
h(11) = (2(11)+3)%10 =5

The value 11 would be stored at the index 5. Now, we have two values(6, 11) stored at the
same index, i.e., 5. This leads to the collision problem, sowe will use the chaining

method to avoid the collision. We will create one more list and add the value 11 to

this list. After the creation of the new list, the newly created list will be linked to the

list having value 6.
(1 The index of key value 13 is: index =
h(13) = (2(13)+3)%10 =9

The value 13 would be stored at index 9. Now, we have two values (3,13) stored at the

same index, i.e., 9. This leads to the collision problem, so we

will use the chaining method to avoid the collision. We will create one more list and add
the value 13 to this list. After the creation of the new list, the newly created list will be

linked to the list having value 3.

1 The index of key value 7 is: index =
h(7) = (2(7)+3)%10 =7

The value 7 would be stored at index 7. Now, we have two values (2, 7) stored at the
same index, i.e., 7. This leads to the collision problem, so wewill use the chaining
method to avoid the collision. We will create one more list and add the value 7 to this
list. After the creation of the new list, the newlycreated list will be linked to the list

having value 2.

(1 The index of key value 12 is: index =
h(12) = (2(12)+3)%10 =7

According to the above calculation, the value 12 must be stored at index 7, but the value 2

exists at index 7. So, we will create a new list and add 12 tothe list. The newly created

list will be linked to the list having a value 7.

The calculated index value associated with each key value is shown in the belowtable:

key Location(u)

3 ((2*3)+3)%10 = 9
2 ((2%2)+3)%10 = 7
9
6

((2%9)+3)%10 = 1
((2%6)+3)%10 = 5

((2*11)+3)%10 =5
((2*13)+3)%10 = 9
((2*7)+3)%10 = 7
((2*12)+3)%10 = 7

In Closed hashing, three techniques are used to resolve the collision:

1. Linear probing
2. Quadratic probing
3. Double Hashing technique

Linear Probing

1 Linear probing is one of the forms of open addressing.

1 As we know that each cell in the hash table contains a key-value pair, so whenthe

collision occurs by mapping a new key to the cell already occupied by another key,
then linear probing technique searches for the closest freelocations and adds a new
key to that empty cell.

In this case, searching is performed sequentially, starting from the position where the
collision occurs till the empty cell is not found.

(1 Let's understand the linear probing through an example.

Consider the above example for the linear probing:

A=3,296,11,13,7,12 where m = 10, and h(k) = 2k+3

The key values 3, 2, 9, 6 are stored at the indexes 9, 7, 1, 5 respectively. The
calculated index value of 11 is 5 which is already occupied by anotherkey value, i.e., 6.
When linear probing is applied, the nearest empty cell tothe index 5 is 6; therefore, the
value 11 will be added at the index 6.

The next key value is 13. The index value associated with this key value is9 when
hash function is applied. The cell is already filled at index 9. When linear probing is
applied, the nearest empty cell to the index 9 is 0; therefore, the value 13 will be
added at the index O.

The next key value is 7. The index value associated with the key value is 7 when
hash function is applied. The cell is already filled at index 7. Whenlinear probing is
applied, the nearest empty cell to the index 7 is 8; therefore, the value 7 will be added
at the index 8.

The next key value is 12. The index value associated with the key value is7 when

hash function is applied. The cell is already filled at index 7. When linear probing is

applied, the nearest empty cell to the index 7 is 2; therefore, the value 12 will be
added at the index 2.
The final hash table would be:

Quadratic Probing

1 In case of linear probing, searching is performed linearly.

(1 In contrast, quadratic probing is an open addressing technique that usesquadratic
polynomial for searching until a empty slot is found.

[1 It can also be defined as that it allows the insertion ki at first free locationfrom

(u+i%)%m where i=0 to m-1.
Let's understand the quadratic probing through an example.
Consider the same example which we discussed in the linear probing.

A=3,296,11,13,7,12 where m = 10, and h(k) = 2k+3

0 The key values 3, 2, 9, 6 are stored at the indexes 9, 7, 1, 5, respectively. Wedo not
need to apply the quadratic probing technique on these key values as there is no
occurrence of the collision.

0 The index value of 11 is 5, but this location is already occupied by the 6. So, we
apply the quadratic probing technique.

Wheni=0

Index= (5+0%)%10 =5

When i=1
Index = (5+1%)%10 =6
Since location 6 is empty, so the value 11 will be added at the index 6.

0 The next element is 13. When the hash function is applied on 13, then the index
value comes out to be 9, which we already discussed in the chaining method. At index
9, the cell is occupied by another value, i.e., 3. So, we will apply the quadratic probing
technique to calculate the free location.

When i=0

Index = (9+0%)%10 =9

When i=1

Index = (9+1%)%10=0

Since location 0 is empty, so the value 13 will be added at the index O.

0 The next element is 7. When the hash function is applied on 7, then the indexvalue
comes out to be 7, which we already discussed in the chaining method. At index 7, the
cell is occupied by another value, i.e., 7. So, we will apply the quadratic probing
technique to calculate the free location.

When i=0

Index = (7+0%)%10 = 7

When i=1

Index = (7+12)%10 = 8

Since location 8 is empty, so the value 7 will be added at the index 8.

0 The next element is 12. When the hash function is applied on 12, then the index
value comes out to be 7. When we observe the hash table then we will get to know
that the cell at index 7 is already occupied by the value 2. So, weapply the Quadratic
probing technique on 12 to determine the free location.

When i=0

Index= (7+0%)%10 =7
When i=1

Index = (7+1%)%10 = 8
When i=2

Index = (7+22)%10 = 1
When i=3

Index = (7+3%)%10 = 6
When i=4

Index = (7+4%)%10 = 3
Since the location 3 is empty, so the value 12 would be stored at the index 3.

1 The final hash table would be:

o

-

© 0 N o g e LN

w

N

—

Double Hashing

[]

Double hashing is an open addressing technique which is used to avoid the
collisions.

When the collision occurs then this technigue uses the secondary hash of thekey.

It uses one hash value as an index to move forward until the empty location isfound.

In double hashing, two hash functions are used.

Suppose h;(k) is one of the hash functions used to calculate the locationswhereas
h,(k) is another hash function.

It can be defined as "insert k; at first free place from (u+v*i)%m where i=(0to m-

)"

In this case, u is the location computed using the hash function and v is equalto
(h2(K)%m).

Consider the same example that we use in quadratic probing.

A=3,2096,11, 13,7, 12 where m = 10, andh1(k) =
2k+3

h2(k) = 3k+1

Location (u)

((2*3)+3)%10 = 9
((2%2)+3)%10 = 7
((2%9)+3)%10 = 1 -
((2*6)+3)%10 = 5 -
((2*11)+3)%10 = 5 (3(11)+1)%10
=4
(2*13)+3)%10=9 = (3(13)+1)%10 =
0
(2*7)+3)%10=7 = (3(7)+1)%10 =
2
(2*12)+3)%10=7 | (3(12)+1)%10 =
.

0 As we know that no collision would occur while inserting the keys (3, 2, 9, 6), so we
will not apply double hashing on these key values.

On inserting the key 11 in a hash table, collision will occur because the calculated
index value of 11 is 5 which is already occupied by some another value. Therefore, we
will apply the double hashing technique on key 11. Whenthe key value is 11, the value
of vis 4.

0 Now, substituting the values of u and v in (u+v*i)%m
When i=0

Index = (5+4*0)%10 =5

When i=1

Index = (5+4*1)%10=9

When i=2
Index = (5+4*2)%10 = 3

0 Since the location 3 is empty in a hash table; therefore, the key 11 is added atthe
index 3.

0 The next element is 13. The calculated index value of 13 is 9 which is already
occupied by some another key value. So, we will use double hashing technique to find
the free location. The value of v is 0.

0 Now, substituting the values of u and v in (u+v*i)%m
When i=0
Index = (9+0*0)%10 =9

0 We will get 9 value in all the iterations from 0 to m-1 as the value of v is zero.
Therefore, we cannot insert 13 into a hash table.

0 The next element is 7. The calculated index value of 7 is 7 which is already occupied

by some another key value. So, we will use double hashing technique to find the free
location. The value of v is 2.

0 Now, substituting the values of u and v in (u+v*i)%m
When i=0

Index = (7 + 2*0)%10 =7

When i=1

Index = (7+2*1)%10 =9

When i=2

Index = (7+2*2)%10 = 1
When i=3
Index = (7+2*3)%10 = 3
When i=4
Index = (7+2*4)%10 =5
When i=5
Index = (7+2*5)%10 =7
When i=6
Index = (7+2*6)%10 =9
When i=7
Index = (7+2*7)%10 =1
When i=8
Index = (7+2*8)%10 = 3

When i=9

Index = (7+2*9)%10 = 5

0 Since we checked all the cases of i (from 0 to 9), but we do not find suitableplace to
insert 7. Therefore, key 7 cannot be inserted in a hash table.

0 The next element is 12. The calculated index value of 12 is 7 which is already
occupied by some another key value. So, we will use double hashing technique to find
the free location. The value of vis 7.

0 Now, substituting the values of u and v in (u+v*i)%m

When i=0

Index = (7+7*0)%10 =7

When i=1

Index = (7+7*1)%10 =4

0 Since the location 4 is empty; therefore, the key 12 is inserted at the index 4.

1 The final hash table would be:

o

=

1

© 0 ~N o a0 b~ 0N

Types of Hash functions
There are many hash functions that use numeric or alphanumeric keys. This articlefocuses

on discussing different hash functions:

1. Division Method.

2. Mid Square Method.
3. Folding Method.

4. Digit Analysis.

Let’s begin discussing these methods in detail.

1. Division Method:

This is the most simple and easiest method to generate a hash value. The hashfunction
divides the value k by M and then uses the remainder obtained.

Formula:

h(K) = k mod M

Here,

k is the key value, and
M is the size of the hash table.

It is best suited that M is a prime number as that can make sure the keys are moreuniformly

distributed. The hash function is dependent upon the remainder of a division.

Example:

k = 12345

M =95

h(12345) = 12345 mod 95
=90

k =1276
M =11
h(1276) = 1276 mod 11

Pros:

1. This method is quite good for any value of M.
2. The division method is very fast since it requires only a single division

operation.

Cons:

1. This method leads to poor performance since consecutive keys map to
consecutive hash values in the hash table.

2. Sometimes extra care should be taken to chose value of M.
2. Mid Square Method:

The mid square method is a very good hashing method. It involves two steps tocompute

the hash value-

1. Square the value of the key k i.e. k

2. Extract the middle r digits as the hash value.

Formula:

h(K) = h(k x k)

Here,

k is the key value.

The value of r can be decided based on the size of the table.

Example:

Suppose the hash table has 100 memory locations. So r = 2 because two digits arerequired to

map the key to the memory location.

k =60

k x k = 60 X 60
= 3600
h(60) = 60

The hash value obtained is 60
Pros:

1. The performance of this method is good as most or all digits of the key value
contribute to the result. This is because all digits in the key contribute to generating

the middle digits of the squared result.

2. The result is not dominated by the distribution of the top digit or bottomdigit of

the original key value.

Cons:

1. The size of the key is one of the limitations of this method, as the key is ofbig size
then its square will double the number of digits.
2. Another disadvantage is that there will be collisions but we can try to reduce

collisions.
3. Digit Folding Method:

This method involves two steps:

1. Divide the key-value k into a number of parts i.e. k1, k2, k3,....,kn, where each part
has the same number of digits except for the last part that can havelesser digits than

the other parts.

2. Add the individual parts. The hash value is obtained by ignoring the lastcarry if

any.

Formula:

k=K1, k2, k3, K4,, kn
s =K1+ k2 + k3 + k4 +....+ knh(K)=

S

Here,

s Is obtained by adding the parts of the key k

Example:

k =12345
k1=12,k2=34,k3=5

s=kl+k2+k3
=12+34+5
=51

h(K) =51

Note:
The number of digits in each part varies depending upon the size of the hash table. Suppose
for example the size of the hash table is 100, then each part must have twodigits except

for the last part that can have a lesser number of digits.

Digit Analysis:

The last method we will examine, digit analysis, is used with static files. A static file
is one in which all the identifiers are known in advance.

Using this method, we first transform the identifiers into numbers using someradix, r.

We then examine the digits of each identifier, deleting those digits that have the most
skewed distributions. We continue deleting digits until the number of remaining digits
Is small enough to give an address in the range of the hashtable.

The digits used to calculate the hash address must be the same for all identifiers and
must not have abnormally high peaks or valleys (the standard deviation must be
small).

In general, a hash function is one that accepts an input of arbitrary length and

distribution and transforms it (typically via a technique that non-recoverably discards

information) into an output that is of fixed size and evenly distributed.

e So (for example), if our inputs were 1938m, 3391i, 3091b,
4903a, 49304, 6573b, and 4891c, we analyze the digits: there
are three 1s, six 9s, seven 3s, two 8s, one m, one i, three Os,
two bs, three 4s, two as, one 6, one 5, one 7, and one c.

e S0 we might decide to eliminate 1, 8, m, 1,0, b, 4,a,6,5,7
and ¢ from the inputs to produce 93, 339, 39, 93, 93, 3, 9.

e Let’s further say we only want a one-character hash, so we
take only the firstcharacter: 9, 3, 3, 9, 9, 3, 9. We now have a
hash function that hashes these seven identifiers more-or-less

evenly into one of two buckets.

OVERFLOW CONDITION IN HASHING

« Anoverflow occurs at the time of the home bucket for a new pair (key,
element) is full. There are two methods for detecting collisions and
overflows in a static hash table; each method using different data
structure to represent the hash table.

Two Methods:

Linear Open Addressing (Linear probing) Chaining

» Open addressing is performed to ensure that all elements are stored
directly into the hash table, thus it attempts to resolve collisions
implementing various methods.

» Linear Probing is performed to resolve collisions by placing the data into
the next open slot in the table.

247

CONTENT BEYOND SYLLABUS
AVL Trees

Tree is one of the most important data structure that is used for efficiently
performing operations like insertion, deletion and searching of values.
However, while working with a large volume of data, construction of a
well-balanced tree for sorting all d

Is stored as a tree, and the actual volume of data being used continually
changes through the insertion of new data and deletion of existing data.
You will find in some cases where the NULL link to a binary tree

links is called as threads and hence it is possible to perform traversals,
insertions, deletions without using either stack or recursion. In this
chapter, you will learn about the Height balance tree which is also known
as the AVL tree.

What is AVL Tree:

AVL tree is a binary search tree in which the difference of heights of left
and right subtrees of any node is less than or equal to one. The technique
of balancing the height of binary trees was developed by

and Landis and henc

Binary Tree.

What if the input to binary search tree comes in a sorted (ascending or
descending) manner? It will then look like this

Il Semester :: Data Structures :: AVL Trees ::

AVL Trees

Height Balanced Trees

Tree is one of the most important data structure that is used for efficiently
performing operations like insertion, deletion and searching of values.
However, while working with a large volume of data, construction of a
balanced tree for sorting all data is not, feasible. Thus only useful data

Is stored as a tree, and the actual volume of data being used continually

changes through the insertion of new data and deletion of existing data.
You will find in some cases where the NULL link to a binary tree

links is called as threads and hence it is possible to perform traversals,
insertions, deletions without using either stack or recursion. In this
chapter, you will learn about the Height balance tree which is also known
AVL tree is a binary search tree in which the difference of heights of left
and right subtrees of any node is less than or equal to one. The technique
of balancing the height of binary trees was developed by Adelson, Velsk
and hence given the short form as AVL tree or Balanced

What if the input to binary search tree comes in a sorted (ascending or

descending) manner? It will then look like this —

Input : Input :
42, 31, 35, 19, 27, 14, 10 10, 14, 27, 19, 35, 31,42
root root

@ @

t is observed that BST's worst

search algorithms, that is O(n). In real

pattern and their frequencies. So, a neggharises to balance out the
existing BST.

Named after their inventor

height balancing binary searc

and the right sub-trees and assures that the difference is not more than
1.

This difference is called the

Consider the following trees.

and the next two trees are not balanced

In the second tree, the left subtree of

has height O, so the difference is 2. In the third tree, the right subtree

of A has height 2 and the left is missing, so it is 0, and the diffe

again. AVL tree permits difference (balance factor) to be only 1.
BalanceFactor = height(left

Il Semester :: Data Structures :: AVL Trees ::

It is observed that BST's worst-case performance is closest to linear
search algorithms, that is O(n). In real-time data, we cannot predict data
pattern and their frequencies. So, a need arises to balance out the
Named after their inventor Adelson, Velsky and Landis, AVL trees
height balancing binary search tree. AVL tree checks the height of the left
trees and assures that the difference is not more than

This difference is called the Balance Factor.

Consider the following trees. Here we see that the first tree is balanced
next two trees are not balanced —

In the second tree, the left subtree of C has height 2 and the right subtree
has height 0, so the difference is 2. In the third tree, the right subtree
has height 2 and the left is missing, so it is 0, and the diffe

again. AVL tree permits difference (balance factor) to be only 1.

= height(left-subtree) — height(right-subtree)

case performance is closest to linear 250

time data, we cannot predict data
pattern and their frequencies. So, a need arises to balance out the
AVL trees.

and the next two trees are not balanced —

2 2
C A
" g 7 L
B 8 B
bt Y@ &l N
A : C A C
Balanced Not balanced Not baianced

251

