
JAWAHARLAL COLLEGE OF ENGINEERING AND

TECHNOLOGY

 (Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

(NBA Accredited)

COURSE MATERIAL

CST 201 DATA STRUCTURES

VISION OF THE INSTITUTION

Emerge as a centre of excellence for professional education to produce high quality engineers

and entrepreneurs for the development of the region and the Nation.

 MISSION OF THE INSTITUTION

 To become an ultimate destination for acquiring latest and advanced knowledge in the

multidisciplinary domains.

 To provide high quality education in engineering and technology through innovative

teaching-learning practices, research and consultancy, embedded with professional ethics.

 To promote intellectual curiosity and thirst for acquiring knowledge through outcome

based education.

 To have partnership with industry and reputed institutions to enhance the employability

skills of the students and pedagogical pursuits.

 To leverage technologies to solve the real life societal problems through community

services.

ABOUT THE DEPARTMENT

 Established in: 2008

 Courses offered: B.Tech in Computer Science and Engineering

 Affiliated to the A P J Abdul Kalam Technological University.

DEPARTMENT VISION

To produce competent professionals with research and innovative skills, by providing them

with the most conducive environment for quality academic and research oriented

undergraduate education along with moral values committed to build a vibrant nation.

DEPARTMENT MISSION

 Provide a learning environment to develop creativity and problem solving skills in a

professional manner.

 Expose to latest technologies and tools used in the field of computer science.

 Provide a platform to explore the industries to understand the work culture and

expectation of an organization.

 Enhance Industry Institute Interaction program to develop the entrepreneurship skills.

 Develop research interest among students which will impart a better life for the society

and the nation.

PROGRAMME EDUCATIONAL OBJECTIVES

Graduates will be able to

 Provide high-quality knowledge in computer science and engineering required for a

computer professional to identify and solve problems in various application domains.

 Persist with the ability in innovative ideas in computer support systems and transmit the

knowledge and skills for research and advanced learning.

 Manifest the motivational capabilities, and turn on a social and economic commitment to

community services.

 PROGRAM OUTCOMES (POS)

 Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering

problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of

mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and

design system components or processes that meet the specified needs with appropriate

consideration for the public health and safety, and the cultural, societal, and environmental

considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research

methods including design of experiments, analysis and interpretation of data, and synthesis

of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern

engineering and IT tools including prediction and modeling to complex engineering

activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to

assess societal, health, safety, legal and cultural issues and the consequent responsibilities

relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and

need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and

norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or

leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and

write effective reports and design documentation, make effective presentations, and give

and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a member

and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to

engage in independent and life-long learning in the broadest context of technological

change.

 COURSE OUTCOMES

SUBJECT CODE: C202

COURSE OUTCOMES

C202.1 Design an algorithm for a computational task and calculate and
analyze the time/space

complexities of that algorithm.

C202.2 Identify and Use appropriate data structures like arrays, linked
list, stacks and queues to

solve computational problems efficiently.

C202.3 Categorize different memory management techniques and the
implementations of linear

data structures.

C202.4 Represent and manipulate data using nonlinear data structures
like trees and graphs to

design algorithms for various applications.

C202.5 Illustrate and understand various techniques for searching
,sorting and hashing algorithms

C202.6 Design an algorithm for a computational task and calculate and
analyze the time/space

complexities of that algorithm.

PROGRAM SPECIFIC OUTCOMES (PSO)

The students will be able to

 Use fundamental knowledge of mathematics to solve problems using suitable analysis

methods, data structure and algorithms.

 Interpret the basic concepts and methods of computer systems and technical

specifications to provide accurate solutions.

 Apply theoretical and practical proficiency with a wide area of programming knowledge,

design new ideas and innovations towards research.

CO PO MAPPING

Note: H-Highly correlated=3, M-Medium correlated=2,L-Less correlated=1

CO’

S

P

O

1

P

O

2

P

O

3

P

O

4

P

O

5

P

O

6

P

O

7

P

O

8

P

O

9

PO

1

0

PO

1

1

PO

1

2

C20

2

.

1

3 3 2 2 - 1 - - - - - 2

C20

2

.

2

2 2 3 2 - 1 - - - - - 1

C20

2

.

3

3 2 3 2 - 2 - - - - - 1

C20

2

.

4

3 1 2 3 - 1 - - - - - 2

C20

2

.

5

3 2 3 3 - 1 - - - - - 2

C20

2

.

6

3 2 3 2 - 2 - - - - - 2

C20

2

2 2 2.

3

2 - 2 2

CO PSO MAPPING

CO’S PSO1 PSO2 PSO3

C202.1 2 3 1

C202.2 2 2 -

C202.3 1 2 -

C202.4 2 2 2

C202.5 1 2 -

C202.6 3 3 -

C202 2 2.3 1

GAPS IN THE SYLLABUS

S:NO TOPIC

1 TOWER OF HANOI PROBLEM

2

Reference Materials

Module 1 Basic Concepts of Data Structures

System Life Cycle, Algorithms, Performance Analysis, Space Complexity, Time Complexity,

Asymptotic Notation, Complexity Calculation of Simple Algorithms

SYSTEM LIFE CYCLE (SLC)

 Good programmers regard large scale computer programs as systems that

contain many complex interacting parts. (Systems: Large Scale Computer

Programs.)

 As systems, these programs undergo a development process called System life cycle.(SLC

: Development Process of Programs)

Different Phases of System Life Cycle

1. Requirements

2. Analysis

3. Design

4. Refinement and coding

5. Verification

1. Requirement Phase:

 All programming projects begin with a set of specifications that defines

the purpose of that program.

 Requirements describe the information that the programmers are given

(input) and the results (output) that must be produced.

 Frequently the initial specifications are defined vaguely and we must

develop rigorous input and output descriptions that include all cases.

2. Analysis Phase

 In this phase the problem is break down into manageable pieces.

 There are two approaches to analysis:-bottom up and top down.

 Bottom up approach is an older, unstructured strategy that places an early

emphasis on coding fine points. Since the programmer does not have a master

plan for the project, the resulting program frequently has many loosely

connected, error ridden segments.

 Top down approach is a structured approach divide the program into manageable segments.

 This phase generates diagrams that are used to design the system.

 Several alternate solutions to the programming problem are developed and

compared during this phase

3. Design Phase

 This phase continues the work done in the analysis phase.

 The designer approaches the system from the perspectives of both data objects

that the program needs and the operations performed on them.

 The first perspective leads to the creation of abstract data types while the second

requires the specification of algorithms and a consideration of algorithm design

strategies.

Ex: Designing a scheduling system for university Data

objects: Students, courses, professors etc Operations:

insert, remove search etc

ie. We might add a course to the list of university courses, search for the courses taught by

some professor etc.

 Since abstract data types and algorithm specifications are language independent.

 We must specify the information required for each data object and ignore coding

details. Ex: Student object should include name, phone number, social security

number etc.

4. Refinement and Coding Phase

 In this phase we choose representations for data objects and write algorithms for

each operation on them.

 Data objects representation can determine the efficiency of the algorithm related to

it. So we should write algorithms that are independent of data objects first.

 Frequently we realize that we could have created a much better system. (May be we

realize that one of our alternate design is superior than this). If our original design is

good, it can absorb changes easily.

5. Verification Phase

 This phase consists of

 developing correctness proofs for the program

 Testing the program with a variety of input data.

 Removing errors.

Correctness of Proofs

 Programs can be proven correct using proofs.(like mathematics theorem)

 Proofs are very time consuming and difficult to develop for large projects.

 Scheduling constraints prevent the development of complete sets of proofs for a

larger system.

 However, selecting algorithm that have been proven correct can reduce the number of

errors.

Testing

 Testing can be done only after coding.

 Testing requires working code and set of test data.

 Test data should be chosen carefully so that it includes all possible scenarios.

 Good test data should verify that every piece of code runs correctly.

 For example if our program contains a switch statement, our test data should be

chosen so that we can check each case within switch statement.

Error Removal

 If done properly, the correctness of proofs and system test will indicate erroneous

code.

 Removal of errors depends on the design and code.

 While debugging large undocumented program written in ‘spaghetti’ code, each

corrected error possibly generates several new errors.

 Debugging a well-documented program that is divided into autonomous units that

interact through parameters is far easier. This especially true if each unit is tested

separately and then integrated into system.

 ALGORITHMS

 Definition: An algorithm is a finite set of instructions to accomplish a particular task. In

addition, all algorithms must satisfy the following criteria:

(1) Input. There are zero or more quantities that are externally supplied.

(2) Output. At least one quantity is produced.

(3) Definiteness. Each instruction is clear and unambiguous.

(4) Finiteness. If we trace out the instructions of an algorithm, then for all cases, the

algorithm terminates after a finite number of steps.

(5) Effectiveness. Every instruction must be basic enough to be carried out, in principle,

by a person using only pencil and paper. It is not enough that each operation be

definite as in (3); it also must be feasible.

We can describe algorithm in many ways

1. We can use a natural language like English

2. Graphical Representation called flow chart, but they work well only if the

algorithm is small and simple.

Translating a Problem into an Algorithm

Example [Selection sort]: Suppose we must devise an algorithm that sorts a collection

of n > 1 elements of arbitrary type. A simple solution is given by the following

[Selection Sort: In each pass of the selection sort, the smallest element is selected from

the unsorted list and exchanged with the elements at the beginning of the unsorted list]

Consider the following depicted array as an example.

For the first position in the sorted list, the whole list is scanned sequentially. The first

position where 14 is stored presently, we search the whole list and find that 10 is the

lowest value.

So we replace 14 with 10. After one iteration 10, which happens to be the minimum value

in the list, appears in the first position of the sorted list

For the second position, where 33 is residing, we start scanning the rest of the list in a

linear manner.

We find that 14 is the second lowest value in the list and it should appear at the second

place. We swap these values.

After two iterations, two least values are positioned at the beginning in a sorted manner.

The same process is applied to the rest of the items in the

array. Following is a pictorial depiction of the entire

sorting process −

 From those elements that are currently unsorted, find the smallest and place it next in

sorted list

 We assume that the elements are stored in an array ‘list’, such that the ith integer is

stored in the ith Position list[i], 0 <= i <n

 Algorithm 1.1 is our first attempt to deriving a solution

1.1 Selection sort algorithm

 We are written this partially in C and partially in English

 To turn the program 1.1 into a real C program, two clearly defined sub tasks are remain:

finding the smallest integer and interchanging it with list[i].

 We can solve this by using a function

1.2 Swap Function

 To swap their values one could call swap(&a, &b)

 We can solve the first subtask by assuming that the minimum is the list[i]. Checking

list[i] with list[i+1], list[i+2]……,list[n-1]. Whenever we find a smaller number we

make it as the minimum. We reach list[n-1] we are finished.

#include <stdio.h> int

main()

{

int a[100], n, i, j, position, swap; printf("Enter

number of elements"); scanf("%d", &n);

printf("Enter %d Numbersn", n); for (i = 0; i < n;

i++) scanf("%d", &a[i]);

for(i = 0; i < n - 1; i++)

{

position=i;

for(j = i + 1; j < n; j++)

{

if(a[position] > a[j]) position=j;

}

if(position != i)

{

swap=a[i]; a[i]=a[position]; a[position]=swap;

}

}

printf("Sorted Array:n"); for(i = 0; i < n;

i++) printf("%dn", a[i]); return 0;

}

• Correctness Proof

Recursive Algorithm

 An algorithm is said to be recursive if the same algorithm is invoked in the body.

 An algorithm that calls itself is direct recursive.

 to be indirect recursive if it calls another algorithm which in turn calls A.

 These recursive mechanisms are extremely powerful, but even more importantly;

many times they can express an otherwise complex process very clearly.

PERFORMANCE ANALYSIS

An algorithm is said to be efficient and fast, if it takes less time to execute &

consume less memory space

Performance is analyzed based on 2 criteria

1. Space Complexity

2. Time Complexity

1. Space Complexity

 Analysis of space complexity of an algorithm or program is the amount of

memory it needs to run to completion.

 The space needed by a program consists of following components.

 Fixed space requirements: Independent on the number and size of the programs

input and output. It include

 Instruction Space (Space needed to store the code)

 Space for simple variable

 Space for constants

 Variable space requirements: This component consists of

 Space needed by structured variable whose size depends on the particular instance I

of the problem being solved

 Space required when a function uses recursion

 Total Space Complexity S(P) of a program is

S(P) = C + Sp(I)

Here Sp(I) is Variable space requirements of program P working on an instance I.

C is a constant representing the fixed space requirements

 Example :

1. int sum(int A[], int n)

{

int sum=0, i; for(i=0;i<n;i++)

{

Sum=sum+A[i]; return sum;

}

}

Here Space needed for variable n = 1 byte Sum = 1

byte

i = 1 byte

Array A[i] = n byte

Total Space complexity = [n+3] byte

2. void main()

{

int x,y,z,sum; printf(“Enter 3 numbers”);

scanf(“%d%d%d”,&x,&y,&z); sum = x+y+z;

printf(“The sum = %d”,sum);

}

Here Space needed for variable x = 1 byte y = 1 byte

z = 1 byte sum = 1 byte

Total Space complexity = 4 byte

3. sum (a,n)

{

int s=0; for(i=0;i<n;i++)

for(j=0;j<m;j++)

s=s+a[i][j];

return s;

}

Here Space needed for variable n = 1 byte m = 1

byte

s = 1 byte i = 1 byte j = 1 byte

Array a[i][j] = nm byte

Total Space complexity = nm+5 byte

2. Time Complexity

 The time complexity of an algorithm or a program is the amount of time it needs

to run to completion.

 T(P)=C +TP

Here C is compile time

Tp is Runtime

 For calculating the time complexity, we use a method called Frequency Count ie,

counting the number of steps

 Comments – 0 step

 Assignment statement – 1 Step

 Conditional statement – 1 Step

 Loop condition for ‘n’ numbers – n+1 Step

 Body of the loop – n step

 Return statement – 1 Step

 Examples:

3. Iterative function for summing a list of numbers

Tabular Method

Statement s

/

e

Frequen

cy

Total

step

s

float sum(float list[],

int n)

{

float tempsum =

0; int i;

for(i=0; i <n; i++)

tempsum +=

list[i];
return tempsum;
}

0

0

1

0

1

1

1
0

0

0

1

0

n+1

n
1
0

0

0

1

0

n+1 n
1
0

Total 2n+3

s/e =steps/execution

4. Recursive summing of a list of numbers

Tabular Method

Statement s

/

e

Frequen

cy

Total

steps

float rsum(float list[], int n)

{

if (n)

return rsum(list, n-1)+list[n-

1]; return list[0];

}

0

0

1

1

1

0

0

0

n+1

n

1

0

0

0

n+1 n

1

0

Total 2n+2

 When we analyze an algorithm it depends on the input data, there are three cases :

a. Best case: The best case is the minimum number of steps that can be executed for the

given parameters.

b. Average case: The average case is the average number of steps executed on instances

with the given parameters.

c. Worst case: In the worst case, is the maximum number of steps that can

be executed for the given parameters

ASYMPTOTIC NOTATION

 Complexity of an algorithm is usually a function of n.

 Behavior of this function is usually expressed in terms of one or more standard functions.

 Expressing the complexity function with reference to other known functions is called

asymptotic complexity.

 Three basic notations are used to express the asymptotic complexity

1. Big – Oh notation O : Upper bound of the algorithm

2. Big – Omega notation Ω : Lower bound of the algorithm

3. Big – Theta notation Θ : Average bound of the algorithm

1. Big – Oh notation O

 Formal method of expressing the upper bound of an algorithm’s running time.

 i.e. it is a measure of longest amount of time it could possibly take for an algorithm

to complete.

 It is used to represent the worst case complexity.

 f(n) = O(g(n)) if and only if there are two positive constants c and n0 such that

f(n) ≤ c g(n) for all n ≥ n0 .

 Then we say that “f(n) is big-O of g(n)”.

 Examples:

1. Derive the Big – Oh notation for f(n) = 2n + 3 Ans:

2n + 3 <= 2n+3n

2n+3 <= 5n for all n>=1 Here c = 5

g(n) = n so, f(n) = O(n)

2. Big – Omega notation Ω

 f(n) = Ω(g(n)) if and only if there are two positive constants c and n0 such that

f(n) ≥ c g(n) for all n ≥ n0.

 Then we say that “f(n) is omega of g(n)”.

 Examples:

Derive the Big – Omega notation for f(n) = 2n + 3 Ans:

2n + 3 >= 1n for all n>=1 Here c = 1

g(n) = n so, f(n) = Ω (n)

3. Big – Theta notation Θ

 f(n) = Θ(g(n)) if and only if there are three positive constants c1, c2 and n0 such that

c1 g(n) ≤ f(n) ≤ c2 g(n) for all n ≥ n0 .

 Then we say that “f(n) is theta of g(n)”.

 Examples:

Derive the Big – Theta notation for f(n) = 2n + 3 Ans:

1n <= 2n + 3 <= 5n for all

n>=1 Here c1 = 1

C2 = 5

g1(n) and g2(n) = n so, f(n) = Θ (n)

TIME COMPLEXITY OF LINEAR SEARCH

 Any algorithm is analyzed based on the unit of computation it performs. For linear

search, we need to count the number of comparisons performed, but each comparison

may or may not search the desired item.

TIME COMPLEXITY OF BINARY SEARCH

 In Binary search algorithm, the target key is examined in a sorted sequence and

this algorithm starts searching with the middle item of the sorted sequence.

a. If the middle item is the target value, then the search item is found and it returns

True.

b. If the target item < middle item, then search for the target value in the first half of

the list.

c. If the target item > middle item, then search for the target value in the second half of

the list.

 In binary search as the list is ordered, so we can eliminate half of the values in the

list in each iteration.

 Consider an example, suppose we want to search 10 in a sorted array of elements,

then we first determine 15 the middle element of the array. As the middle item

contains 18, which is greater than the target value 10, so can discard the second half of

the list and repeat the process to first half of the array. This process is repeated until

the desired target item is located in the list. If the item is found then it returns True,

otherwise False.

 In Binary Search, each comparison eliminates about half of the items from the list.

Consider a list with n items, then about n/2 items will be eliminated after first

comparison. After second comparison, n/4 items of the list will be eliminated. If this

process is repeated for several times, then there will be just one item left in the list.

The number of comparisons required to reach to this point is n/2i = 1. If we solve for i,

then it gives us i = log2 n. The maximum number is comparison is logarithmic in

nature, hence the time complexity of binary search is O(log n).

MODULE 2 - ARRAYS AND SEARCHING

Polynomial representation using Arrays, Sparse matrix, Stacks, Queues - Circular Queues,

Priority Queues, Double Ended Queues, Evaluation of Expressions, Linear Search and

Binary Search

DATA STRUCTURE

It is a representation of logical relationship between individual elements of data. It is also

defined as a mathematical model of particular organization of data items. It is also

called building block of a program.

Classification of data structure

1. Linear data structure

 All the elements form a sequence or maintain a linear ordering.

2. Non linear data structure

 Elements are distributed over a plane.

1. POLYNOMIAL REPRESENTATION USING ARRAYS

 A polynomial is a sum of terms where each term has the form axe

, Where x is the variable, a is the coefficient and e is the exponent.

Polynomial representation using Arrays

Polynomial Addition Example

Steps of Polynomial Addition

2. SPARSE MATRIX

 A matrix is a two-dimensional data object made of ‘m’ rows and ‘n’ columns,

therefore having total m x n values. If most of the elements of the matrix have 0

values, then it is called a sparse matrix.

 Sparse matrix is a matrix which contains very few non-zero elements.

 When a sparse matrix is represented with a 2-dimensional array, we waste a lot of space to

represent that matrix.

 Consider a matrix of size 100 X 100 containing only 10 non-zero elements. In this

matrix, only 10 spaces are filled with non-zero values and remaining spaces of the

matrix are filled with zero. Totally we allocate 100 X 100 X 2 = 20000 bytes of space

to store this integer matrix. To access these 10 non-zero elements we have to make

scanning for 10000 times.

 Sparse Matrix Representations can be done in many ways following are two

common representations:

1. Array representation

 Three tuple form

2. Linked list representation

 2D array is used to represent a sparse matrix in which there are three columns named as

 Row:Index of row, where non-zero element is located

 Column:Index of column, where non-zero element is located

 Value:Value of the non zero element located at index –(row,column)

Triplets

(0,2,3)

(0,4,4)

(1,2,5)

(1,3,7)

(3,1,2)

(3,2,6)

Why to use Sparse Matrix instead of simple matrix ?

 Storage: There are lesser non-zero elements than zeros and thus lesser memory

can be used to store only those elements.

 Computing time: Computing time can be saved by logically designing a data

structure traversing only non-zero elements.

3. STACK

 It is a linear data structure in which elements are placed one above another.

 A stack is an ordered collection of homogeneous data elements where the insertion

and deletion operations take place only at one end called Top of the stack.

 LIFO - In stack elements are arranged in Last-In-First-Out manner (LIFO). So it is

also called LIFO lists.

 Anything added to the stack goes on the “top” of the stack.

 Anything removed from the stack is taken from the “top” of the stack.

 Things are removed in the reverse order from that in which they were inserted

Operations of Stack

 Two basic operations of stack:

 PUSH : Insert an element at the top of stack

 POP: Delete an element from the top of stack

 An element in the stack is termed as ITEM.

3

 Initially top is set to -1, to indicate an empty stack. (Top = -1)

 The maximum no. of elements that a stack can accommodate is termed MAX_SIZE.

 If stack is full Top = MAX_SIZE - 1

Array representation of stack

 Stack can be represented using a linear array.

 There is a pointer called TOP to indicate the top of the stack

0 1 2 3 4 5

top

 Overflow: If we try to insert a new element in the stack top (push) which is already

full, then the situation is called stack overflow.

 Underflow: If we try to delete an element (pop) from an empty stack, the situation is

called stack underflow.

Basic Operations

 push() − Pushing (storing) an element on the stack.

 pop() − Removing (accessing) an element from the stack.

 peek() − get the top data element of the stack, without removing it.

int peek() {

return stack[top];

}

 isFull() − check if stack is full. bool

isfull() {

if (top == MAX_SIZE)

return true;

aaa bbb ccc ddd

else

return false;

}

 isEmpty() − check if stack is empty. bool

isempty() {

if(top == -1)

return true;

else

}

return false;

51

ation

Algorithm: PUSH()

 Let A be an array with Maximum size as MAX_SIZE. Initially, top= -1

POP Oper

47

1. Start

2. if top < MAX_SIZE – 1

3. set top=top+1

4. Set A[top]=item

5. else

6. print “OVERFLOW”

7. exit

52

1. Start

2. if top= -1 then

3. print “UNDERFLOW”

4. else

5. set item=A[top]

6. Set top=top-1

7. exit

Algorithm: POP()

Applications of stack

 Reversing an array

 A B C D

 Pushing to stack A B C D

53

 Popping from stack D C B A

 Undo operations

 Infix to prefix, infix to postfix conversion

 Tree Traversal

 Evaluation of postfix expressions

4. QUEUES

 A queue is an ordered collection of homogeneous data elements. In which insertion is

done at one end called REAR and deletion is done at another end called FRONT.

 FIFO - In queue elements are arranged in First-In-First-Out manner (FIFO).

 First inserted element is removed first

 Two basic operations of queue:

1. Enqueue -> Insert an element at the rear end of queue.

2. Dequeue-> Delete an element from the front end of queue.

 Initial case rear = -1 and front = 0, MAX SIZE is the size of the queue.

 If rear = front then queue contains only a single element

 If rear < front then queue is empty

 Queue full : rear = n-1 and front =0

 Whenever an element is deleted from the queue, the value of FRONT is increased by 1.

54

 i.e. FRONT=FRONT+1

 Similarly, whenever an element is added to the queue, the REAR is incremented by 1 as,

 REAR=REAR+1

Array Representation of Queue

Basic Operations

 enqueue() − add (store) an item to the queue.

 dequeue() − remove (access) an item from the queue.

 peek() − Gets the element at the front of the queue without removing it.

int peek()

{

return queue[front];

}

 isfull() − Checks if the queue is full

bool isfull()

{

If (rear == MAXSIZE - 1)

return true;

55

else

}

return false;

 isempty() − Checks if the queue is empty. bool

isempty()

{

if(front < 0 || front > rear) return true;

56

else

}

return false;

Algorithm : Enqueue

57

1. Start

2. if rear = MAX_SIZE – 1 then

3. print “OVERFLOW”

4. else

5. set rear = rear + 1

6. Set A[rear]=item

7. exit

Algorithm : Dequeue

58

1. Start

2. if rear < front then

3. print “UNDER FLOW”

4. else

5. set item = A[front}

6. set front = front + 1

7. exit

Type of Queues

 Circular Queue

 Priority Queue

 Doubly ended Queue

54 53

5. CIRCULAR QUEUE

 To utilize space properly, circular queue is derived.

 In this queue the elements are inserted in circular manner.

 So that no space is wasted at all.

 Circular queue empty:

FRONT= -1

REAR= -1

 Circular queue full:

(rear + 1) % max_size = Front

 It is a modification of simple queue in which the rear pointer is set to the initial

location, whenever it reaches the location max_size – 1.

Insertion Algorithm (ENQUEUE)

55

1. if (front == -1 & rear == -1)

2. set front =0 and rear = 0

3. Set a[rear]=item

4. else if (front = (rear+1) % max_size) then

5. Print over flow

6. else

7. set rear = (rear + 1)% max_size

8. Set a[rear] = item

9. Exit

1. if front = -1 and rear = -1 then

2. print underflow and exit

3. else if front = rear

4. set item= a[front]

5. set front = -1 and rear = -1

6. else

7. set item= a[front]

8. set front = (front + 1) % max_size

9. Exit

Deletion Algorithm (DEQUEUE)

7. PRIORITY QUEUE

 Regular queue follows a First In First Out (FIFO) order to insert and remove an

item. Whatever goes in first, comes out first.

 In a priority queue, an item with the highest priority comes out first.

56

 Therefore, the FIFO pattern is no longer valid.

 Every item in the priority queue is associated with a priority.

 It does not matter in which order we insert the items in the queue

 The item with higher priority must be removed before the item with the lower priority.

 If two elements have the same priority, they are served according to their order in the queue.

Operations on a priority queue

1. EnQueue: EnQueue operation inserts an item into the queue. The item can be

inserted at the end of the queue or at the front of the queue or at the middle. The item

must have a priority.

2. DeQueue: DeQueue operation removes the item with the highest priority from the

queue.

3. Peek: Peek operation reads the item with the highest priority.

57

1. Enqueue Operation

1. IF((Front == 0)&&(Rear == N-1))

2. PRINT “Overflow Condition”

3. Else IF(Front == -1& rear == -1)

4. Front = Rear =0

5. Queue[Rear] = Data

6. Priority[Rear] = Priority

7. ELSE IF(Rear ==N-1)

8. FOR (i=Front;i<=Rear;i++)

9. FOR(i=Front;i<=Rear;i++)

10. Q[i-Front] =Q[i]

11. Pr[i-Front] = Pr[i]

12. Rear = Rear-Front

13. Front = 0

14. FOR(i = r;i>f;i–)

15. IF(p>Pr[i])

16. Q[i+1] = Q[i] Pr[i+1] = Pr[i]

17. ELSE

18. Q[i+1] = data Pr[i+1] = p

19. Rear++.

2. Dequeue operation

1. IF(Front == -1)

2. PRINT “Queue Under flow condition”

3. ELSE

4. PRINT”Q[f],Pr[f]”

5. IF(Front==Rear)

58

6. Front = Rear = -1

7. ELSE

8. FRONT++

Applications of Priority Queue

1. CPU Scheduling

2. Graph algorithms like Dijkstra’s shortest path algorithm, Prim’s Minimum

Spanning Tree, etc

3. All queue applications where priority is involved.

4. For load balancing and interrupt handling in an operating system

8. DOUBLY ENDED QUEUE

It is a list of elements in which insertion and deletion are perform at both ends

 It has 4 operations

1. Insertion at rear end

2. Insertion at front end

3. Deletion at rear end

4. Deletion at front end

1. Algorithm : Insertion at rear end

59

1. Start

2. if rear = MAX_SIZE – 1 then

3. print “OVERFLOW”

4. Else

5. set rear = rear + 1

6. Set A[rear]=item

7. exit

57

1. Start

2. if front = 0 then

3. print “OVERFLOW” and exit

4. Else

5. set front = front - 1

6. Set A[front]=item

7. exit

1. Start

2. if front = 0 and rear = -1 then

3. print “UNDER FLOW” and exit

4. set item = A[front]

5. if front = rear then

6. set front = 0 and rear = -1

7. Else set front = front + 1

8. exit

2. Insertion at front end

3. Deletion at front end

4. Deletion at rear end

1. Start

2. if front = 0 and rear = -1 then

3. print “UNDER FLOW” and exit

4. set item = A[rear]

5. if front = rear then

6. set front = 0 and rear = -1

7. Else set rear = rear - 1

8. exit

58

58

9. CONVERSION & EVALUATION OF EXPRESSIONS

 Infix Expression: The operator occurs between the operands

<operand> <operator> <operand>

Eg: a+b

 Prefix Expression (Polish notation): The operators occurs before the operand

<operator> <operand> <operand>

Eg : +ab

 Postfix Expression (Reverse Polish notation): The operators occurs after the operand

<operand> <operand> <operator>

Eg : ab+

59

59

60

60

61

61

62

62

A. Postfix Expression Evaluation

Given P is the postfix expression, the following algorithm uses a stack to hold operands. It

finds the value of the arithmetic expression P, Written in postfix notation.

Algorithm:

Step 1: Add “) “ at the end of P

Step 2: Scan P from left – right & repeat the steps 3 & 4

Step 3: If an operand occurs, PUSH it to stack.

Step 4: If an operator occurs, then

A: Remove the top elements of the stack.

When A is the top element and B is the next top element B: Evaluate

B A

63

63

C: Place the result of step B back to stack

Step 5: Set the value equals to TOP element of the stack.

64

64

1. Evaluate the expression 5 * (6 + 2) – 12 / 4 Ans

: Convert to postfix notation

5 * 6 2 + - 12 / 4

5 6 2 + * - 12 4 /

= 5 6 2 + * 12 4 / -

Add “) “ at the end of P

P = 5 6 2 + * 12 4 / -)

6 2 + / (4 – 2 1 *)

6 2 + / 4 2 1 * -

6 2 + 4 2 1 * - /

P = 6 2 + 4 2 1 * - /)

2. Evaluate the expression (6 + 2) / (4 – 2 * 1

)

Ans: Convert to postfix notation

Scanned Symbol Stack

5 5

6 5, 6

2 5, 6, 2

+ 5, 8

* 40

12 40, 12

4 40, 12, 4

/ 40, 3

- 37

65

65

Scanned Symbol
Stack

stack which holds the left parenthesis and operators. We renthesis to stack and adding a right

parenthesis at the end of Q.

Algorithm

Step 1: PUSH left parenthesis “(“ into stack and add right parenthesis “) ” at the end of

Q.

Step 2: Scan the expression Q from Left – Right and repeat the step 3 to 6 for each element

of Q until this stack is empty.

Step 3: If an operand occurs add it to P.

Step 4: If a Left parenthesis occurs then PUSH it to stack

Step 5: If an operator occurs then

A: Repeatedly POP the stack and add to P, each operator which has same or higher

precedence than

B: add to stack

Step 6: If a Right parenthesis occurs then

A: Repeatedly POP from stack and add to P each operator until a left parenthesis occurs.

66

66

B: Remove the left parenthesis

Step 7: Exit

1. Q = A + (B * C - (D / E ^ F) * G) * H

Ans : Add right parenthesis at the end of the expression Q = A

+ (B * C - (D / E ^ F) * G) * H)

Symbol

Scanned

Stack
p

 (

A (
A

+ (+
A

((+ (
A

B (+ (
AB

* (+ (*
AB

C (+ (*
ABC

- (+ (-
ABC*

((+ (- (
ABC*

D (+ (- (
ABC*D

/ (+ (- (/
ABC*D

E (+ (- (/
ABC*DE

67

67

^ (+ (- (/ ^
ABC*DE

F (+ (- (/ ^
ABC*DEF

) (+ (-
ABC*DEF ^ /

* (+ (- *
ABC*DEF ^ /

G (+ (- *
ABC*DEF ^ /G

) (+
ABC*DEF ^ /G * -

* (+ *
ABC*DEF ^ /G * -

H (+ *
ABC*DEF ^ /G * - H

) ABC*DEF ^ /G * - H
* +

2. Q = ((A + B) * C – (D – E)) ^ (F + G)

Ans:

Q = ((A + B) * C – (D – E)) ^ (F + G))

Symbol

Scanned

Stack
p

0 (

(((

((((

A (((
A

+ (((+
A

68

68

B (((+
AB

) ((
AB+

* ((*
AB+

C ((*
AB+C

- ((-
AB+C*

(((- (
AB+C*

D ((- (
AB+C*D

- ((- (-
AB+C*D

E ((- (-
AB+C*DE

) ((-
AB+C*DE-

) (
AB+C*DE--

^ (^
AB+C*DE--

((^ (
AB+C*DE--

F (^ (
AB+C*DE--F

+ (^ (+
AB+C*DE--F

G (^ (+
AB+C*DE--FG

) (^
AB+C*DE--FG+

) AB+C*DE—FG+^

3. Q = (A + B) * C / D + E ^ F / G Ans :

Q = (A + B) * C / D + E ^ F / G)

69

69

Symbol

Scanned

Stack p

 (

(((

A ((
A

+ ((+
A

B ((+
AB

) (
AB+

* (*
AB+

C (*
AB+C

/ (/
AB+C*

D (/
AB+C*D

+ (+
AB+C*D/

E (+
AB+C*D/E

^ (+ ^
AB+C*D/E

F (+ ^
AB+C*D/EF

/ (+ /
AB+C*D/EF^

G (+ /
AB+C*D/EF^G

) AB+C*D/EF^G/+

70

70

1. Start

2. Read the ITEM to be searched

3. Set flag=0

4. Repeat for i=0 to N 5. if A[i]= =ITEM

6. print “item
found”

7. flag=1

8. If flag= =0

9. print “item not
found”

10. LINEAR SEARCH AND BINARY SEARCH

1. Linear search: Small & unsorted arrays

2. Binary search : Large arrays & sorted arrays

1. Linear Search

 It means looking at each element of the array, in turn, until you find the target value.

Algorithm

 In the best case, the target value is in the first element of the array. So the search

takes some tiny, and constant, amount of time. Computer scientists denote this O(1) In

real life, we don’t care about the best case, because it so rarely actually happens.

 In the worst case, the target value is in the last element of the array. So the search

takes an amount of time proportional to the length of the array. Computer scientists

denote this O(n)

 In the average case, the target value is somewhere in the array. So on average, the

target value will be in the middle of the array. So the search takes an amount of time

proportional to half the length of the array – also proportional to the length of the array

71

71

– O(n) againBinary Search

 The general term for a smart search through sorted data is a binary search.

1. The initial search region is the whole array.

2. Look at the data value in the middle of the search region.

3. If you’ve found your target, stop.

4. If your target is less than the middle data value, the new search region is the lower

half of the data.

5. If your target is greater than the middle data value, the new search region is the

higher half of the data.

6. Continue from Step 2.

72

72

Module 3 Linked List and Memory Management

Self Referential Structures, Dynamic Memory Allocation, Singly Linked List-Operations on

Linked List. Doubly Linked List, Circular Linked List, Stacks and Queues using Linked List,

Polynomial representation using Linked List Memory allocation and de-allocation-First-fit,

Best-fit and Worst-fit allocation schemes

Self-Referential structures are those structures that have one or more pointers which point

to the same type of structure, as their member.

In other words, structures pointing to the same type of structures are self- referential in nature.

Example: struct node

{

int data1;

char data2;

struct node* link;

};

int main()

{

struct node ob; return 0;

}

In the above example ‘link’ is a pointer to a structure of type ‘node’. Hence, the structure

‘node’ is a self-referential structure with ‘link’ as the referencing pointer.

An important point to consider is that the pointer should be initialized properly before
accessing,

https://www.geeksforgeeks.org/structures-c/

73

73

as by default it contains garbage value.

Types of Self Referential Structures

1 Self Referential Structure with Single Link

2 Self Referential Structure with Multiple Links

Self Referential Structure with Single Link: These structures can have only one self-

pointer as their member. The following example will show us how to connect the

objects of a self-referential structure with the single link and access the corresponding

data members. The connection formed is shown in the following figure.

Self Referential Structure with Multiple Links: Self referential structures with multiple

links can have more than one self-pointers. Many complicated data structures can be

easily constructed using these structures. Such structures can easily connect to more

than one nodes at a time. The following example shows one such structure with more

than one links.

The connections made in the above example can be understood using the following figure.

struct node { int data;

struct node* prev_link; struct node*

next_link;

};

74

74

DYNAMIC MEMEORY ALLOCATION

Since C is a structured language, it has some fixed rules for programming. One of it

includes changing the size of an array. An array is collection of items stored at

continuous memory locations.

As it can be seen that the length (size) of the array above made is 9. But what if there is a
requirement to change this length (size). For Example,

1. If there is a situation where only 5 elements are needed to be entered in this array. In

this case, the remaining 4 indices are just wasting memory in this array. So there is a

requirement to lessen the length (size) of the array from 9 to 5.

2. Take another situation. In this, there is an array of 9 elements with all 9 indices

filled. But there is a need to enter 3 more elements in this array. In this case 3

indices more are required. So the length (size) of the array needs to be changed

from 9 to 12.

This procedure is referred to as Dynamic Memory Allocation in C.

C Dynamic Memory Allocation can be defined as a procedure in which the size of a data

structure (like Array) is changed during the runtime.

C provides some functions to achieve these tasks. There are 4 library functions provided by

C defined under <stdlib.h> header file to facilitate dynamic memory allocation in C

programming. They are:

(a) malloc()

(b) calloc()

(c) free()

75

75

(d) realloc()

malloc() method

“malloc” or “memory allocation” method in C is used to dynamically allocate a single

large block of memory with the specified size. It returns a pointer of type void which

can be cast into a pointer of any form. It initializes each block with default garbage

value.

Syntax:

ptr = (cast-type*) malloc(byte-size)

For Example:

#include <stdio.h> #include

<stdlib.h>

int main()

{

// This pointer will hold the

// base address of the block created int* ptr;

int n, i;

// Get the number of elements for the array n = 5;

printf("Enter number of elements: %d\n", n);

ptr = (int*) malloc(100 * sizeof(int));

Since the size of int is 4 bytes, this statement will allocate 400 bytes of

memory. And, the pointer ptr holds the address of the first byte in the

allocated memory.

76

76

// Dynamically allocate memory using malloc() ptr =

(int*)malloc(n * sizeof(int));

// Check if the memory has been successfully

// allocated by malloc or not if (ptr ==

NULL) {

printf("Memory not allocated.\n"); exit(0);

}

else {

// Memory has been successfully allocated printf("Memory successfully

allocated using malloc.\n");

// Get the elements of the array for (i = 0; i < n;

++i) {

ptr[i] = i + 1;

}

// Print the elements of the array printf("The elements of

the array are: "); for (i = 0; i < n; ++i) {

printf("%d, ", ptr[i]);

}

}

return 0;

}

calloc() method

77

77

“calloc” or “contiguous allocation” method in C is used to dynamically allocate the

specified number of blocks of memory of the specified type. It initializes each block

with a default value ‘0’.

Syntax:

ptr = (cast-type*)calloc(n, element-size);

For Example:

#include <stdio.h> #include

<stdlib.h>

int main()

{

// This pointer will hold the

// base address of the block created int* ptr;

int n, i;

// Get the number of elements for the array n = 5;

printf("Enter number of elements: %d\n", n);

// Dynamically allocate memory using calloc() ptr =

(int*)calloc(n, sizeof(int));

ptr = (float*) calloc(25, sizeof(float));

This statement allocates contiguous space in memory for 25 elements

each with the size of the float.

78

78

// Check if the memory has been successfully

// allocated by calloc or not if (ptr ==

NULL) {

printf("Memory not allocated.\n");

exit(0);

}

else {

// Memory has been successfully allocated printf("Memory successfully

allocated using calloc.\n");

// Get the elements of the array for (i = 0; i < n;

++i) {

ptr[i] = i + 1;

}

// Print the elements of the array printf("The elements of

the array are: "); for (i = 0; i < n; ++i) {

printf("%d, ", ptr[i]);

}

}

return 0;

}

free() method

“free” method in C is used to dynamically de-allocate the memory. The memory allocated

using functions malloc() and calloc() is not de- allocated on their own. Hence the

79

79

free() method is used, whenever the dynamic memory allocation takes place. It helps

to reduce wastage of memory by freeing it.

Syntax:

free(ptr);

Example:

#include <stdio.h> #include

<stdlib.h> int main()

{

// This pointer will hold the

// base address of the block created int *ptr, *ptr1;

int n, i;

// Get the number of elements for the array n = 5;

printf("Enter number of elements: %d\n", n);

// Dynamically allocate memory using malloc()

80

80

ptr = (int*)malloc(n * sizeof(int));

// Dynamically allocate memory using calloc() ptr1 =

(int*)calloc(n, sizeof(int));

// Check if the memory has been successfully

// allocated by malloc or not

if (ptr == NULL || ptr1 == NULL) {

printf("Memory not allocated.\n"); exit(0);

}

else {

// Memory has been successfully allocated printf("Memory successfully

allocated using malloc.\n");

// Free the memory free(ptr);

printf("Malloc Memory successfully freed.\n");

81

81

// Memory has been successfully allocated printf("\nMemory successfully

allocated using calloc.\n");

// Free the memory free(ptr1);

printf("Calloc Memory successfully freed.\n");

}

return 0;

}

realloc() method

“realloc” or “re-allocation” method in C is used to dynamically change the memory

allocation of a previously allocated memory. In other words, if the memory previously

allocated with the help of malloc or calloc is insufficient, realloc can be used to

dynamically re-allocate memory. re- allocation of memory maintains the already

present value and new blocks will be initialized with default garbage value.

Syntax:

ptr = realloc(ptr, newSize);

where ptr is reallocated with new size 'newSize'.

82

82

If space is insufficient, allocation fails and returns a NULL pointer. #include <stdio.h>

#include <stdlib.h>

int main()

{

// This pointer will hold the

// base address of the block created int* ptr;

int n, i;

// Get the number of elements for the array n = 5;

printf("Enter number of elements: %d\n", n);

83

83

// Dynamically allocate memory using calloc() ptr =

(int*)calloc(n, sizeof(int));

// Check if the memory has been successfully

// allocated by malloc or not if (ptr ==

NULL) {

printf("Memory not allocated.\n"); exit(0);

}

else {

// Memory has been successfully allocated printf("Memory successfully

allocated using calloc.\n");

// Get the elements of the array for (i = 0; i < n;

++i) {

ptr[i] = i + 1;

}

84

84

// Print the elements of the array printf("The elements of

the array are: "); for (i = 0; i < n; ++i) {

printf("%d, ", ptr[i]);

}

// Get the new size for the array n = 10;

printf("\n\nEnter the new size of the array: %d\n", n);

// Dynamically re-allocate memory using realloc() ptr = realloc(ptr, n

* sizeof(int));

// Memory has been successfully allocated

printf("Memory successfully re-allocated using realloc.\n");

// Get the new elements of the array for (i = 5; i < n;

++i) {

ptr[i] = i + 1;

}

85

85

// Print the elements of the array printf("The elements of

the array are: "); for (i = 0; i < n; ++i) {

printf("%d, ", ptr[i]);

}

free(ptr);

}

return 0;

}

LINKED LISTS

A linked list, in simple terms, is a linear collection of data elements. These data

elements are called nodes.

Linked list is a data structure which in turn can be used to implement other data

structures.

86

86

In Fig, we can see a linked list in which every node contains two parts, an integer and

a pointer to the next node.

The left part of the node which contains data may include a simple data type, an

array, or a structure.

The right part of the node contains a pointer to the next node (or address of the next

node in sequence).

The last node will have no next node connected to it, so it will store a special value

called NULL. In Fig, the NULL pointer is represented by X.

While programming, we usually define NULL as –1. Hence, a NULL pointer denotes

the end of the list.

Linked lists contain a pointer variable START that stores the address of the first

node in the list.

We can traverse the entire list using START which contains the address of the first

node; the next part of the first node in turn stores the address of its succeeding

node.

Using this technique, the individual nodes of the list will form a chain of nodes.

If START = NULL, then the linked list is empty and contains no nodes.

In C, we can implement a linked list using the following code: struct node

{

int data;

87

87

struct node *next;

};

Let us see how a linked list is maintained in the memory.

(a) In order to form a linked list, we need a structure called node

which has two fields, DATA and NEXT.

(b) DATA will store the information part and NEXT will store the address of the

next node in sequence. Consider Fig. 6.2.

(c) In the figure, we can see that the variable START is used to store the address

of the first node. Here, in this example, START= 1, so the first data is stored at

address 1, which is H.

(d) The corresponding NEXT stores the address of the next node, which is 4. So, we

will look at address 4 to fetch the next data item.

(e) The second data element obtained from address 4 is E.

(f) Again, we see the corresponding NEXT to go to the next node. From

the entry in the NEXT, we get the next address, that is 7, and fetch L as the data.

(g) We repeat this procedure until we reach a position where the NEXT entry

contains –1 or NULL, as this would denote the end of the linked list.

88

88

Advantages

Linked list have many advantages. Some of the very important advantages are:

• Linked Lists are dynamic data structure: That is, they can grow or shrink

during the execution of a program.

• Efficient memory utilization: Here, memory is not pre- allocated. Memory is

allocated whenever it is required. And it is deallocated when it is no longer

needed.

• Insertion and deletions are easier and efficient: Linked lists provide

flexibility in inserting data item at a specified position and deletion of a data

item from the given position.

• Many complex applications can be easily carried out with linked lists.

89

89

Disadvantages

• More Memory: If the numbers of fields are more, then more memory

space is needed.

• Access to an arbitrary data item is little bit cumbersome and also time

consuming.

Types of Linked List

Following are the various flavours of linked list.

• Simple Linked List − Item Navigation is forward only.

• Doubly Linked List − Items can be navigated forward and backward way.

• Circular Linked List − Last item contains link of the first element as next and

and first element has link to last element as prev.

Basic Operations

• Insertion − add an element at the beginning of the list.

• Display − displaying complete list.

• Search − search an element using given key.

• Delete − delete an element using given key

SINGLY LINKED Lists

(h) A singly linked list is the simplest type of linked list in which every node

contains some data and a pointer to the next node of the same data type.

(i) A singly linked list allows traversal of data only in one way. Figure 6.7 shows a

singly linked list

90

90

LINKED LIST OPERATIONS

Traversing a Linked List

(j) Traversing a linked list means accessing the nodes of the list in order to

perform some processing on them.

(k) a linked list always contains a pointer variable START which stores the

address of the first node of the list. End of the list is marked by storing NULL or

–1 in the NEXT field of the last node.

(l) For traversing the linked list, we also make use of another pointer

variable PTR which points to the node that is currently being accessed.

(m) The algorithm to traverse a linked list is shown in Fig. 6.8.

(n) In this algorithm, we first initialize PTR with the address of START. So now,

PTR points to the first node of the linked list.

91

91

(i) Then in Step 2, a while loop is executed which is repeated till PTR processes

the last node, that is until it encounters NULL.

(ii) In Step 3, we apply the process (e.g., print) to the current node, that is, the node

pointed by PTR.

(o) In Step 4, we move to the next node by making the PTR

variable point to the node whose address is stored in the NEXT field.

Searching for a Value in a Linked List

Consider the linked list shown in Fig. 6.11. If we have VAL = 4, then the flow of

the algorithm can be explained as shown in the figure.

92

92

Steps to create a linked list

Step 1 : Include alloc.h Header

File #include<alloc.h>

1. We don‟t know, how many nodes user is going to create once he execute the

program.

2. In this case we are going to allocate memory using Dynamic Memory

Allocation functions malloc.

3. Dynamic memory allocation functions are included in alloc.h

Step 2 : Define Node Structure

We are now defining the new global node which can be accessible through any of the

function.

struct node

{ int data;

struct node *next;

}*start=NULL;

Step 3 : Create Node using Dynamic Memory Allocation .Now we are creating one node

dynamically using malloc function.We don‟t have prior knowledge about number of

nodes , so we are calling malloc function to create node at run time.

new_node=(struct node *)malloc(sizeof(struct node));

Fill Information in newly Created Node ,Now we are accepting value from the user using

scanf. Accepted Integer value is stored in the data field. Whenever we create new node

, Make its Next Field

http://www.c4learn.com/dynamic-memory-allocation-malloc-calloc.html
http://www.c4learn.com/dynamic-memory-allocation-malloc-calloc.html
http://www.c4learn.com/dynamic-memory-allocation-malloc-calloc.html

93

93

as NULL. printf("Enter the data : "); scanf("%d",&new_node-

>data);

Step 4 : if(start==NULL) then new_node -> next = NULL; start = new_node;

otherwise ptr=start; while(ptr->next!=NULL)

ptr=ptr->next;

ptr->next = new_node; new_node-

>next=NULL;

step 5:continue this process till while(num!=-1)

Inserting a New Node in a Linked List

(p) Case 1: The new node is inserted at the beginning.

(q) Case 2: The new node is inserted at the end.

(r) Case 3: The new node is inserted after a given node.

CASE 1: Inserting a Node at the Beginning of a Linked List

(s) Consider the linked list shown in Fig. 6.12. Suppose we want to add a new node

with data 9 and

(t) add it as the first node of the list. Then the following changes will be done in

the linked list.

94

94

(u) In Step 1, we first check whether memory is available for the new node. If the

free memory has exhausted, then an OVERFLOW message is printed.

(v) Otherwise, if a free memory cell is available, then we allocate space for the

new node.

(w) Set its DATA part with the given VAL and the next part is initialized with the

address of the first node of the list, which is stored in START.

95

95

(x) Now, since the new node is added as the first node of the list, it will now be

known as the START node, that is, the START pointer variable will now hold

the address of the NEW_NODE.

Note the following two steps:

(y) Step 2: SET NEW_NODE = AVAIL

(z) Step 3: SET AVAIL = AVAIL -> NEXT

(aa) These steps allocate memory for the new node.

Program

node *insert_beg(node *start)

{

node *new_node; int num;

printf("\n Enter the data : "); scanf("%d",

&num);

new_node = (node *)malloc(sizeof(node)); new_node -> data

= num;

new_node -> next = start; start =

new_node;

return start;

}

CASE 2: Inserting a Node at the End of a Linked List

96

96

(bb) Suppose we want to add a new node with data 9 as the last node of the list. Then the

following changes will be done in the linked list.

1. In Step 6, we take a pointer variable PTR and initialize it with START. That is, PTR

now points to the first node of the linked list.

97

97

2. In the while loop, we traverse through the linked list to reach the last node.

2 Once we reach the last node, in Step 9, we change the NEXT pointer of the last node to

store the address of the new node.

program

struct node *insert_end(struct node *start)

{

struct node *ptr, *new_node; int num;

printf("\n Enter the data : "); scanf("%d",

&num);

new_node = (node *)malloc(sizeof(node)); new_node -> data

= num;

new_node -> next = NULL; ptr = start;

while(ptr -> next != NULL) ptr = ptr -> next;

ptr -> next = new_node; return start;

}

3 CASE 3: Inserting a Node After a Given Node in a Linked List

(cc) Consider the linked list shown in Fig. 6.17. Suppose we want to add a new node with

value 9 after the node containing data 3

98

98

(dd) In Step 5, we take a pointer variable PTR and initialize it with START. That is,

PTR now points to the first node of the linked list.

(ee) Then we take another pointer variable PREPTR which will be used to store the

address of the node preceding PTR.

(ff) Initially, PREPTR is initialized to PTR.

(gg) So now, PTR,PREPTR, and START are all pointing to the first node of the linked list.

(hh) In the while loop, we traverse through the linked list to reach the node that has its

value equal to NUM.

(ii) We need to reach this node because the new node will be inserted after this node.

99

99

(jj) Once we reach this node, in Steps 10 and 11, we change the NEXT pointers in such a

way that new node is inserted after the desired node.

Program

node *insert_after(node *start)

{

100

100

node *new_node, *ptr, *preptr; int num, val;

printf("\n Enter the data : "); scanf("%d",

&num);

printf("\n Enter the value after which the data has to be inserted : "); scanf("%d", &val);

new_node = (node *)malloc(sizeof(node)); new_node -> data

= num;

ptr = start; preptr = ptr;

while(preptr -> data != val)

{

preptr = ptr;

ptr = ptr -> next;

}

preptr -> next=new_node; new_node ->

next = ptr; return start;

}

Deleting a Node from a Linked List

101

101

(kk) We will consider three cases and then see how deletion is done in each case.

(ll) Case 1: The first node is deleted.

(mm) Case 2: The last node is deleted.

(nn) Case 3: The node after a given node is deleted.

CASE 1:Deleting the First Node from a Linked List

(oo) Before we describe the algorithms in all these three cases, let us first discuss an

important term called UNDERFLOW.

(pp) Underflow is a condition that occurs when we try to delete a node from a linked list

that is empty.

(qq) This happens when START = NULL or when there are no more nodes to delete.

(rr) Note that when we delete a node from a linked list, we actually have to free the

memory occupied by that node.

(ss) The memory is returned to the free pool so that it can be used to store other programs

and data. Whatever be the case of deletion, we always change the AVAIL pointer so

that it points to the address that has been recently vacated.

102

102

(tt) If START = NULL, then it signifies that there are no nodes in the list and the

control is transferred to the last statement of the algorithm.

(uu) if there are nodes in the linked list, then we use a pointer variable PTR that is set to

point to the first node of the list.

(vv) For this, we initialize PTR with START that stores the address of the first node of

the list.

(ww) In Step 3, START is made to point to the next node in sequence and finally

the memory occupied by the node pointed by PTR (initially the first node of the list)

 is freed and returned to the free pool.

Program

struct node *delete_beg(node *start)

{

struct node *ptr; ptr = start;

start = start -> next;

103

103

free(ptr); return start;

}

CASE2: Deleting the Last Node from a Linked List

(xx) Consider the linked list shown in Fig. 6.22. Suppose we want to delete the last node

from the linked list, then the following changes will be done in the linked list.

(yy) Figure 6.23 shows the algorithm to delete the last node from a linked list. In Step 2, we

take a pointer variable PTR and initialize it with START.

104

104

(zz) That is, PTR now points to the first node of the linked list. In the while loop, we take

another pointer variable PREPTR such that it always points to one node before the

PTR.

(aaa) Once we reach the last node and the second last node, we set the NEXT

pointer of the second last node to NULL, so that it now becomes the (new) last node

of the linked list.

(bbb) The memory of the previous last node is freed and returned back to the

free pool

Program

node *delete_end(node *start)

{

node *ptr, *preptr; ptr =

start;

while(ptr -> next != NULL)

105

105

{

preptr = ptr;

ptr = ptr -> next;

}preptr -> next = NULL; free(ptr);

return start;}

CASE 3:Deleting the Node After a Given Node in a Linked List

(ccc) In Step 2, we take a pointer variable PTR and initialize it with START. That is,

PTR now points to the first node of the linked list.

(ddd) In the while loop, we take another pointer variable PREPTR such that it

always points to one node before the PTR.

(eee) Once we reach the node containing VAL and the node

(fff) succeeding it, we set the next pointer of the node containing VAL to the address

contained in next field of the node succeeding it.

(ggg) The memory of the node succeeding the given node is freed and returned

back to the free pool.

106

106

(hhh) Consider the linked list shown in Fig. 6.24.

(iii) Suppose we want to delete the node that succeeds the node which contains data value

4. Then the following changes will be done in the linked list

•

Program

node *delete_after(node *start)

{

node *ptr, *preptr; int val;

printf("\n Enter the value after which the node has to deleted : ");

107

107

scanf("%d", &val); ptr =

start;

preptr = ptr;

while(preptr -> data != val)

{

preptr = ptr;

ptr = ptr -> next;

}

preptr -> next=ptr -> next; free(ptr);

return start;

}

CIRCULAR LINKED LISTs

(jjj) In a circular linked list, the last node contains a pointer to the first node of the list.

(kkk) We can have a circular singly linked list as well as a circular doubly

linked list.

(lll) While traversing a circular linked list, we can begin at any node and traverse the list

in any direction, forward or backward, until we reach the same node where we started.

(mmm) Thus, a circular linked list has no beginning and no ending. Figure

6.26 shows a circular linked list.

108

108

Inserting a New Node in a Circular Linked List

(nnn) Case 1: The new node is inserted at the beginning of the circular linked

list.

(ooo) Case 2: The new node is inserted at the end of the circular linked list.

CASE 1:Inserting a Node at the Beginning of a Circular Linked List

(ppp) Consider the linked list shown in Fig. 6.29. Suppose we want to add a new

 node with data 9 as the first node of the list.

(iii) Figure 6.30 shows the algorithm to insert a new node at the beginning of a linked

list. In Step 1, we first check whether memory

109

109

is available for the new node. If the free memory has exhausted, then an OVERFLOW

message is printed.

(iv) Otherwise, if free memory cell is available, then we allocate space for the new node.

(v) Set its DATA part with the given VAL and the NEXT part is initialized with the

address of the first node of the list, which is stored in START.

(vi) Now, since the new node is added as the first node of the list, it will now be known as

the START node,that is, the START pointer variable will now hold the address of the

NEW_NODE.

(vii) While inserting a node in a circular linked list, we have to use a while loop to

traverse to the last node of the list.

(viii) Because the last node contains a pointer to START, its NEXT field is updated so that

after insertion it points to the new node which will be now known as START

110

110

Program insert new node at beginning

struct node *insert_beg(struct node *start)

{

struct node *new_node, *ptr; int num;

printf("\n Enter the data : ");

scanf("%d", &num);

new_node = (struct node *)malloc(sizeof(struct node)); new_node ->

data = num;

ptr = start;

while(ptr -> next != start) ptr = ptr -

> next;

ptr -> next = new_node; new_node

-> next = start; start =

new_node;

return start;

}

CASE 2: Inserting a Node at the End of a Circular Linked List

111

111

112

112

(qqq) Figure 6.32 shows the algorithm to insert a new node at the end of a circular

linked list.

(rrr) In Step 6, we take a pointer variable PTR and initialize it with START.

(sss) That is, PTR now points to the first node of the linked list.

(ttt) In the while loop, we traverse through the linked list to reach the last node.

(uuu) Once we reach the last node, in Step 9, we change the NEXT pointer of the last

node to store the address of the new node.

(vvv) Remember that the NEXT field of the new node contains the address of the first node

which is denoted by START.

Program

struct node *insert_end(struct node *start)

113

113

{

struct node *ptr, *new_node; int num;

printf("\n Enter the data : ");

scanf("%d", &num);

new_node = (struct node *)malloc(sizeof(struct node)); new_node ->

data = num;

ptr = start;

while(ptr -> next != start) ptr = ptr -

> next;

ptr -> next = new_node; new_node

-> next = start; return start;}

Deleting a Node from a Circular Linked List

(www) Case 1: The first node is deleted.

(xxx) Case 2: The last node is deleted.

CASE 1: Deleting the First Node from a Circular Linked List

114

114

115

115

(yyy) In Step 1 of the algorithm, we check if the linked list exists or not. If START

= NULL, then it signifies that there are no nodes in the list and the control is

transferred to the last statement of the algorithm.

(zzz) However, if there are nodes in the linked list, then we use a pointer variable PTR

which will be used to traverse the list to ultimately reach the last node.

(aaaa) In Step 5, we change the next pointer of the last node to point to the second

node of the circular linked list.

(bbbb) In Step 6, the memory occupied by the first node is freed.

(cccc) Finally, in Step 7, the second node now becomes the first node of the list and

its address is stored in the pointer variable START.

Program

struct node *delete_beg(struct node *start)

{

116

116

struct node *ptr;

ptr = start;

while(ptr -> next != start) ptr = ptr -

> next;

ptr -> next = start -> next;

free(start);

start = ptr -> next; return

start;

}

CASE 2: Deleting the Last Node from a Circular Linked List

(dddd) In Step 2, we take a pointer variable PTR and initialize it with START.

(eeee) That is,PTR now points to the first node of the linked list.

117

117

(ffff) In the while loop, we take another pointer variable PREPTR such that PREPTR

always points to one node before PTR.

(gggg) Once we reach the last node and the second last node, we set the next pointer

of the second last node to START, so that it now becomes the (new) last node of the

linked list.

(hhhh) The memory of the previous last node is freed and returned to the free pool.

program

program

struct node *delete_end(struct node *start)

{

118

118

struct node *ptr, *preptr; ptr = start;

while(ptr -> next != start)

{

preptr = ptr;

ptr = ptr -> next;

}

preptr -> next = ptr -> next; free(ptr);

return start;}

DOUBLY LINKED LISTS

(iiii) A doubly linked list or a two-way linked list is a more complex type of linked list

which contains a pointer to the next as well as the previous node in the sequence.

(jjjj) Therefore, it consists of three parts—data, a pointer to the next node,

and a pointer to the previous node .

119

119

(kkkk) The PREV field of the first node and the NEXT field of the last node will

contain NULL.

(llll) The PREV field is used to store the address of the preceding node, which enables us

to traverse the list in the backward direction.

(mmmm) Thus, we see that a doubly linked list calls for more space per node and more

expensive basic operations.

(nnnn) However, a doubly linked list provides the ease to manipulate the elements

of the list as it maintains pointers to nodes in both the directions (forward and

backward).

(oooo) The main advantage of using a doubly linked list is that it makes searching

twice as efficient.

Inserting a New Node in a Doubly Linked List

(pppp) Case 1: The new node is inserted at the beginning.

(qqqq) Case 2: The new node is inserted at the end.

(rrrr) Case 3: The new node is inserted after a given node.

CASE 1: Inserting a Node at the Beginning of a Doubly Linked List

=

120

120

(ssss) In Step 1, we first check whether memory is available for the new node.

(tttt) If the free memory has exhausted, then an OVERFLOW message is printed.

(uuuu) Otherwise, if free memory cell is available, then we allocate space for the

new node.

(vvvv) Set its DATA part with the given VAL and the NEXT part is initialized with

the address of the first node of the list, which is stored in START.

(wwww) Now, since the new node is added as the first node of the list, it will now be

known as the START node, that is, the START pointer variable will now hold the

address of NEW_NODE.

program

struct node *insert_beg(struct node *start)

{

struct node *new_node;

121

121

int num;

printf("\n Enter the data : ");

scanf("%d", &num);

new_node = (struct node *)malloc(sizeof(struct node)); new_node ->

data = num;

start -> prev = new_node;

new_node -> next = start;

new_node -> prev = NULL; start =

new_node;

return start;

}

CASE 2: Inserting a Node at the End end of a Doubly Linked List

(xxxx) Figure 6.42 shows the algorithm to insert a new node at the end of a doubly

linked list. In Step 6, we take a pointer variable PTR and initialize it with START.

122

122

(yyyy) In the while loop, we traverse through the linked list to reach the last

node.

(zzzz) Once we reach the last node, in Step 9, we change the NEXT pointer of the last

node to store the address of the new node. Remember that the NEXT field of the

(aaaaa) new node contains NULL which signifies the end of the linked list.

(bbbbb) The PREV field of the NEW_NODE will be set so that it points to the node

pointed by PTR (now the second last node of the list).

Program

struct node *insert_end(struct node *start)

{

struct node *ptr, *new_node; int num;

123

123

printf("\n Enter the data : ");

scanf("%d", &num);

new_node = (struct node *)malloc(sizeof(struct node)); new_node ->

data = num;

ptr=start;

while(ptr -> next != NULL) ptr = ptr ->

next;

ptr -> next = new_node; new_node ->

prev = ptr; new_node -> next =

NULL; return start;

}

CASE 3: Inserting a Node After a Given Node in a Doubly Linked List

Figure 6.43 shows the algorithm to insert a new node after a given node in a doubly

linked list.

124

124

In Step 5, we take a pointer PTR and initialize it with START. That is, PTR now points to

the first node of the linked list. In the while loop, we traverse through the linked list to

reach the node that has its value equal to NUM.

We need to reach this node because the new node will be inserted after this node. Once

we reach this node, we change the NEXT and PREV fields in such a way that the new

node is inserted after the desired node.

Program

struct node *insert_after(struct node *start)

{

125

125

struct node *new_node, *ptr; int num,

val;

printf("\n Enter the data : ");

scanf("%d", &num);

printf("\n Enter the value after which the data has to be inserted : "); scanf("%d", &val);

new_node = (struct node *)malloc(sizeof(struct node)); new_node ->

data = num;

ptr = start;

while(ptr -> data != val) ptr = ptr -

> next; new_node -> prev =

ptr;

new_node -> next = ptr -> next; ptr -> next

-> prev = new_node; ptr -> next =

new_node;

return start;

}

Deleting a Node from a Doubly Linked List

(ccccc) Case 1: The first node is deleted.

(ddddd) Case 2: The last node is deleted.

(eeeee) Case 3: The node after a given node is deleted.

CASE 1: Deleting the First Node from a Doubly Linked List

(fffff) When we want to delete a node from the beginning of the list, then the

following changes will be done in the linked list.

126

126

127

127

(ggggg) Figure 6.48 shows the algorithm to delete the first node of a doubly linked

list.

(hhhhh) In Step 1 of the algorithm, we check if the linked list exists or not. If

START =NULL, then it signifies that there are no nodes in the list and the control is

transferred to the last statement of the algorithm.

(iiiii) However, if there are nodes in the linked list, then we use a temporary pointer

variable PTR that is set to point to the first node of the list.

(jjjjj) For this, we initialize PTR with START that stores the address of the first node of

the list.

(kkkkk) In Step 3, START is made to point to the next node in sequence and finally

the memory occupied by PTR (initially the first node of the list) is freed and returned

to the free pool.

Program

struct node *delete_beg(struct node *start)

{

struct node *ptr; ptr =

start;

start = start -> next;

128

128

start -> prev = NULL; free(ptr);

return start;

}

CASE 2: Deleting the Last Node from a Doubly Linked List

(lllll) Suppose we want to delete the last node from the linked list, then the following

changes will be done in the linked list.

(mmmmm) Figure 6.50 shows the algorithm to delete the last node of a doubly linked

list.

129

129

(nnnnn) In Step 2, we take a pointer variable PTR and initialize it with START.

(ooooo) That is, PTR now points to the first node of the linked list. The while loop

traverses through the list to reach the last node.

(ppppp) Once we reach the last node, we can also access the second last node by taking

its address from the PREV field of the last node.

(qqqqq) To delete the last node, we simply have to set the next field of second last node

to NULL, so that it now becomes the (new) last node of the linked list.

(rrrrr) The memory of the previous last node is freed and returned to the free pool.

Program

struct node *delete_end(struct node *start)

{

struct node *ptr; ptr =

start;

while(ptr -> next != NULL) ptr = ptr ->

next;

ptr -> prev -> next = NULL; free(ptr);

return start;

}

CASE 3 : Deleting the Node After a Given Node in a Doubly Linked List

130

130

In Step 2, we take a pointer variable PTR and initialize it with

131

131

START. That is, PTR now points to the first node of the doubly linked list. The while

loop traverses through the linked list to reach the given node.

(sssss) Once we reach the node containing VAL, the node

(ttttt) succeeding it can be easily accessed by using the address stored in its NEXT

field. The NEXT field of the given node is set to contain the contents in the NEXT

field of the succeeding node.

(uuuuu) Finally, the memory of the node succeeding the given node is freed and

returned to the free pool.

Program

struct node *delete_after(struct node *start)

{

struct node *ptr, *temp; int val;

printf("\n Enter the value after which the node has to deleted : "); scanf("%d", &val);

ptr = start;

while(ptr -> data != val) ptr = ptr -

> next;

temp = ptr -> next;

ptr -> next = temp -> next; temp ->

next -> prev = ptr; free(temp);

return start;

}

Header Linked Lists

132

132

(vvvvv) A header linked list is a special type of linked list which contains a header

node at the beginning of the list. So, in a header linked list, START will not point to

the first node of the list but START will contain the address of the header node.

(wwwww) The following are the two variants of a header linked list:

(xxxxx) Grounded header linked list which stores NULL in the next field of the last

node.

(yyyyy) Circular header linked list which stores the address of the header node in

the next field of the last node. Here, the header node will denote the end of the list.

Application of linked list-Polynomial

Polynomial Addition

Linked list are widely used to represent and manipulate polynomials. Polynomials

are the expressions containing number of terms with nonzero coefficient and

exponents.In the linked representation of polynomials, each term is considered as

a node. And such a node contains three fields

http://www.ktustudents.in/
http://www.ktustudents.in/
http://www.ktustudents.in/
http://www.ktustudents.in/
http://www.ktustudents.in/
http://www.ktustudents.in/
http://www.ktustudents.in/

133

133

• Coefficient field

. Exponent field

• Link field

The coefficient field holds the value of the coefficient of a term and the exponent

field contains the exponent value of the term. And the link field contains the

address of the next term in the polynomial. The polynomial node structure is

Coefficient(coeff)

Exponent(expo)
Address of

the

next

node(n

ext)

Algorithm

Two polynomials can be added. And the steps involved in adding two

polynomials are given below

1. Read the number of terms in the first polynomial P

2. Read the coefficient and exponent of the first polynomial

3. Read the number of terms in the second polynomial Q

4. Read the coefficient and exponent of the second polynomial

5. Set the temporary pointers p and q to travers the two polynomials

respectively

6. Compare the exponents of two polynomials starting from the first nodes

1. If both exponents are equal then add the coefficient and store it in the

resultant linked list

134

134

2. If the exponent of the current term in the first polynomial P is less than the

exponent of the current term of the second polynomial then added the second

term to the resultant linked list. And, move the pointer q to point to the next node

in the second polynomial Q.

3. If the exponent of the current term in the first polynomial P is greater than the

exponent of the current term in the second polynomial Q, then the current term

of the first polynomial is added to the resultant linked list. And move the pointer

p to the next node.

4. Append the remaining nodes of either of the polynomials to the resultant

linked list.

Let us illustrate the way the two polynomials are added. Let p and q be two polynomials

having three terms each.

P=3x2+2x+7 Q=5x3+2x2+x

These two polynomial can be represented as

http://www.ktustudents.in/
http://www.ktustudents.in/
http://www.ktustudents.in/
http://www.ktustudents.in/
http://www.ktustudents.in/
http://www.ktustudents.in/

135

135

Step 1. Compare the exponent of p and the corresponding

exponent of q. Here,

expo(p)<expo(q)

So, add the terms pointed to by q to the resultant list. And now advance the q

pointer.

Step 2.

136

136

132

Compare the exponent of the current terms. Here,

expo(p)=expo(q)

So, add the coefficients of these two terms and link this to the resultant list. And,

advance the pointers p and q to their next nodes.

Compare the exponents of the current terms again

expo(p)=expo(q)

So, add the coefficients of these two terms and link this to the resultant linked list.

And, advance the pointers to their next nodes. Q reaches the NULL and p

points the last node.

133

There is no node in the second polynomial to compare with. So, the last node in the

first polynomial is added to the end of the resultant linked list.

Step 5. Display the resultant linked list. The resultant linked list is pointed to by the

pointer R

Algorithm for Polynomial Multiplication

1. Read the number of terms in the first polynomial

2. Read the coefficient and exponent of the first polynomial

3. Read the number of terms in the second polynomial

4. Read the coefficient and exponent of the second polynomial

5. if one of the list is empty then the nonempty linked list is added to the resultant

linked list Otherwise goto step 6.

6. for each term of the first list

134

1. multiply each term of the second linked list with a term of the first linked list

2. add the new term to the resultant polynomial

3. reposition the pointer to the starting of the second linked list

4. go to the next node

5. adds a term to the polynomial in the descending order of the

exponent

7. Display the resultant linked list

Linked list implementation of stack

Instead of using array, we can also use linked list to implement stack. Linked list

allocates the memory dynamically. However, time complexity in both the scenario

is same for all the operations i.e. push, pop and peek.

In linked list implementation of stack, the nodes are maintained non- contiguously in

the memory. Each node contains a pointer to its immediate successor node in the

stack. Stack is said to be overflown if the space left in the memory heap is not

enough to create a node.

135

The top most node in the stack always contains null in its address field. Lets discuss the way

in which, each operation is performed in linked list implementation of stack.

Adding a node to the stack (Push operation)

Adding a node to the stack is referred to as push operation. Pushing an element to a

stack in linked list implementation is different from that of an array implementation.

In order to push an element onto the stack, the following steps are involved.

(a) Create a node first and allocate memory to it.

(b) If the list is empty then the item is to be pushed as the start node of the list. This

includes assigning value to the data part of the node and assign null to the address

part of the node.

(c) If there are some nodes in the list already, then we have to add the new element in

the beginning of the list (to not violate the property of the stack). For this purpose,

assign the address of the starting element to the address field of the new node and

make the new node, the starting node of the list.

Time Complexity : o(1)

136

C implementation :

void push ()

{

int val;

struct node *ptr =(struct node*)malloc(sizeof(struct node)); if(ptr == NULL)

{

printf("not able to push the element");

}

else

{

printf("Enter the value"); scanf("%d",&val);

if(head==NULL)

{

ptr->val = val;

ptr -> next = NULL; head=ptr;

}

else

{

ptr->val = val; ptr->next = head;

head=ptr;

}

printf("Item pushed");

}

}

Deleting a node from the stack (POP operation)

137

Deleting a node from the top of stack is referred to

as pop operation. Deleting a node from the linked list

138

implementation of stack is different from that in the array implementation. In order to

pop an element from the stack, we need to follow the following steps :

• Check for the underflow condition: The underflow condition occurs when we

try to pop from an already empty stack. The stack will be empty if the head pointer

of the list points to null.

• Adjust the head pointer accordingly: In stack, the elements are popped only from

one end, therefore, the value stored in the head pointer must be deleted and the node

must be freed. The next node of the head node now becomes the head node.

Time Complexity : o(n)

C implementation

void pop()

{

int item;

struct node *ptr;

if (head == NULL)

{

printf("Underflow");

}

else

{

item = head->val; ptr = head;

head = head->next; free(ptr);

printf("Item popped");

}

}

139

Display the nodes (Traversing)

Displaying all the nodes of a stack needs traversing all the nodes of the linked list organized

in the form of stack. For this purpose, we need to follow the following steps.

• Copy the head pointer into a temporary pointer.

• Move the temporary pointer through all the nodes of the list and print the value

field attached to every node.

Time Complexity : o(n)

C Implementation

void display()

{

int i;

struct node *ptr; ptr=head;

if(ptr == NULL)

{

printf("Stack is empty\n");

}

else

{

printf("Printing Stack elements \n"); while(ptr!=NULL)

{

printf("%d\n",ptr->val); ptr = ptr->next;

}

}

}

140

Linked List implementation of Queue

Due to the drawbacks discussed in the previous section of this tutorial, the array

implementation cannot be used for the large scale applications where the queues are

implemented. One of the alternative of array implementation is linked list

implementation of queue.

The storage requirement of linked representation of a queue with n elements is o(n)

while the time requirement for operations is o(1).

In a linked queue, each node of the queue consists of two parts i.e. data part and the link

part. Each element of the queue points to its immediate next element in the memory.

In the linked queue, there are two pointers maintained in the memory i.e. front pointer and

rear pointer. The front pointer contains the address of the starting element of the queue

while the rear pointer contains the address of the last element of the queue.

Insertion and deletions are performed at rear and front end respectively. If front and rear

both are NULL, it indicates that the queue is empty.

The linked representation of queue is shown in the following figure.

Operation on Linked Queue

There are two basic operations which can be implemented on the linked queues. The

operations are Insertion and Deletion.

141

Insert operation

The insert operation append the queue by adding an element to the end of the queue. The

new element will be the last element of the queue.

Firstly, allocate the memory for the new node ptr by using the following statement.

Ptr = (struct node *) malloc (sizeof(struct node));

There can be the two scenario of inserting this new node ptr into the linked queue.

In the first scenario, we insert element into an empty queue. In this case, the condition

front = NULL becomes true. Now, the new element will be added as the only

element of the queue and the next pointer of front and rear pointer both, will point to

NULL.

ptr -> data = item; if(front ==

NULL)

{

front = ptr; rear = ptr;

front -> next = NULL; rear -> next =

NULL;

}

In the second case, the queue contains more than one element. The condition front =

NULL becomes false. In this scenario, we need to update the end pointer rear so

that the next pointer of rear will point to the new node ptr. Since, this is a linked

queue, hence we also need to make the rear pointer point to the newly added node

ptr. We also need to make the next pointer of rear point to NULL.

rear -> next = ptr; rear = ptr;

rear->next = NULL;

142

In this way, the element is inserted into the queue. The algorithm and the C

implementation is given as follows.

Algorithm

1. Step 1: Allocate the space for the new node PTR

2. Step 2: SET PTR -> DATA = VAL

3. Step 3: IF FRONT = NULL SET FRONT

= REAR = PTR

SET FRONT -> NEXT = REAR -> NEXT = NULL ELSE

SET REAR -> NEXT = PTR SET REAR =

PTR

SET REAR -> NEXT = NULL [END OF IF]

4. Step 4: END

C Function

void insert(struct node *ptr, int item;)

{

ptr = (struct node *) malloc (sizeof(struct node)); if(ptr ==

NULL)

{

printf("\nOVERFLOW\n"); return;

}

else

{

ptr -> data = item; if(front ==

NULL)

{

front = ptr; rear = ptr;

143

front -> next = NULL;

144

rear -> next = NULL;

}

else

{

rear -> next = ptr; rear = ptr;

rear->next = NULL;

}

}

}

Deletion

Deletion operation removes the element that is first inserted among all the queue

elements. Firstly, we need to check either the list is empty or not. The condition

front == NULL becomes true if the list is empty, in this case , we simply write

underflow on the console and make exit.

Otherwise, we will delete the element that is pointed by the pointer front. For this

purpose, copy the node pointed by the front pointer into the pointer ptr. Now, shift

the front pointer, point to its next node and free the node pointed by the node ptr.

This is done by using the following statements.

ptr = front;

front = front -> next; free(ptr);

The algorithm and C function is given as follows.

Algorithm

5. Step 1: IF FRONT = NULL Write "

Underflow "

Go to Step 5 [END OF IF]

6. Step 2: SET PTR = FRONT

145

7. Step 3: SET FRONT = FRONT -> NEXT

8. Step 4: FREE PTR

9. Step 5: END

C Function

void delete (struct node *ptr)

{

if(front == NULL)

{

printf("\nUNDERFLOW\n"); return;

}

else

{

ptr = front;

front = front -> next; free(ptr);

}

}

Memory management

Basic task of any program is to manipulate data.These data should be stored in memory

during their manipulation. There are two memory management schemes for the

storage allocations of data:

• Static storage management

• Dynamic storage management

• Static storage management In case of static storage management scheme, the net

amount of memory required for various data for a program is allocated before the

starting of the execution of the program.Once memory is allocated, it neither can be

extended nor can be returned to the memory bank for the use of other programs at the

same time.

146

• Dynamic storage management

• Dynamic storage management scheme allows the user to allocate and

deallocate as per the necessity during the execution of programs.

• This dynamic memory management scheme is suitable in multiprogramming as

well as single-user environment where generally more than one program reside in

the memory and their memory requirement can be known only during their

execution.

• Operating systems (OS) generally provides the service of dynamic memory

management. The data structure for implementing such a scheme is linked list.

• Various principles on which the dynamic memory management scheme is based on

o Allocation schemes: here we discuss how a request for a memory block will be

serviced.

 Fixed block allocation

 Variable block allocation.

• First fit and its variant, (ii) Next fit , (iii) Best fit, (iv) Worst fit

o Deallocation schemes: here we discuss how to return a memory block to the

memory bank whenever it is no more required.

 Random deallocation

 Ordered deallocation.

o Garbage collection: to maintain a memory bank so that it can be utilized

efficiently.

2. Allocation schemes

• Memory bank or pool of free storages is often a collection of non-

contiguous blocks of memory.

147

• Their linearity can be maintained by means of pointers between one block to

another or in other words, memory bank is a linked list where links are to maintain

the adjacency of blocks.

• Regarding the size of the blocks there are two practices: fixed block storage and

variable block storage. Let us discuss each of them individually.

• 2.1 Fixed Block Storage:

Here each block is of the same size.

• The size is determined by the system manager (user).

• Here, the memory manager (a program of OS) maintains a pointer

AVAIL which points a list of non-contiguous memory blocks.

• A user program communicates with the memory manager by means of

two functions GETNODE(NODE) and RETURNNODE(ptr)

• Procedure GETNODE(NODE)

Steps

 Start

 If (AVAIL = NULL) then

Print "The memory is insufficient"

148

 Else

ptr = AVAIL

AVAIL = AVAIL->LINK

149

Return(ptr)

 Endlf

 Stop

• Whenever a memory block is no more required, it can be returned to the memory

bank through a procedure RETURNNODE()

• Procedure RETURNNODE(PTR)

• Steps

 Start

 ptrl = AVAIL

 While (ptrl->LINK # NULL) do ptrl = ptr1-

>LINK

 EndWhile

 ptr1->LINK= PTR

 ptr->LINK= NULL

 Stop

• Fixed block allocation is the simplest strategy. But the main drawback of this

strategy is the wastage of space.

• For example, suppose each memory block is of size 1 K (1024 bytes); now for a

request of memory block, say, of size 1.1 K we have to avail 2 blocks (that is 2 K

memory space) thus wasting 0.9 K memory space.

• Variable Block Storage

• Here, the memory manager (a program of OS) maintains a pointer AVAIL which

points a list of non-contiguous memory blocks.

150

• To overcome the disadvantages of fixed block storage, we can maintain blocks of

variable sizes, instead of fixed size blocks.

• Procedure GETNODE(NODE)

151

Steps

o Start

o If (AVAIL = NULL) then

• Print "Memory bank is insufficient"

• Exit

• Endlf

• ptr = AVAIL

• While (ptr->LINK ≠NULL) and (ptr->SIZE < SIZEOF(NODE)) do

• ptrl = ptr

• ptr = ptr->LINK

• EndWhile

• If (ptr->LINK = NULL) and (ptr->SIZE < SIZEOF(NODE)) then

• Print "Memory request is too large: Unable to serve"

• Else

• ptrl->LINK = ptr->LINK

o 2. Return(ptr)

• Endlf 10.Stop

• This procedure assumes that blocks of memory are stored in ascending order of their

sizes.

• Procedure RETURNNODE(PTR)
Steps

* Start

* ptrl = AVAIL

* While (ptrl->SIZE < ptr->SIZE) and (ptrl->LINK # NULL)) do

• ptr2 = ptrl

• ptrl = ptrl->LINK

* EndWhile

* ptr2->LINK = PTR

* PTR->LINK = ptrl

152

* Stop

• The dynamic memory management system should provide the following

services:

o Searching the memory for a block of requested size and servicing the request

(allocation)

o Handling a free block when it is returned to the memory manager.

153

o Coalescing the smaller free blocks into larger block(s) (garbage collection and

compaction).

• Storage allocation strategies

• (a) First-fit allocation, (b) Best-fit allocation, (c) Worst-fit allocation, (d) Next-fit

allocation

• First-fit storage allocation:

This is the simplest storage allocation strategy.

• Here the list of available storages will be searched and as soon as a free

storage block of size N will be found pointer of that block will be sent to the calling

program after retaining the residue space.

• For example, for a block of size 2 K, if the first-fit strategy found a

block of 7 K, then after retaining a storage block of size 5 K, 2 K memory will be

sent to the caller.

• Leads to fast allocation of memory space.

• Leads to memory waste

154

• Best-fit storage allocation

• This strategy will not allocate a block of size > N, as it is found in first- fit method,

instead will continue searching to find a suitable block so that the block size is closer

to the block size of request.

• Goal: find the smallest memory block into which the job will fit

• Results in least wasted space.

• Slower in making allocation

• For example, for a request of 2 K, if the list contains the blocks of sizes, 1 K, 3 K, 7 K,

2.5 K, 5 K, then it will find the block of size 2.5 K as suitable block for allocation.

From this block after retaining 0.5 K, pointer for 2 K block will be returned.

• Worst-fit storage allocation

• Slower in making allocation

• Allocates the largest free available block to the new job

• Opposite of best-fit

• Best-fit finds a block which is small and nearest to the block size as 'requested,

whereas, worst-fit strategy is a reverse of it. It allocates the largest block available in the

available storage list.

• The idea behind the worst-fit is to reduce the rate of production of small blocks which

are quite common when best-fit strategy is used for memory allocation.

• Next-fit storage allocation

• The idea behind the worst-fit is to reduce the rate of production of small

blocks which are quite common when best-fit strategy is used for memory allocation.

• Next-fit allocation strategy is a modification of first-fit strategy.

155

• Starts searching from last allocated block, for the next available block when a new

job arrives.

• In case of first-fit strategy, searching will always occur from beginning of the free list

whereas in next-fit strategy, search begins where the last allocation has been done; in this

strategy, pointer to the free list is saved following an allocation and is used to begin for

the subsequent request.

The idea of this strategy is to reduce the search by avoiding examination of smaller blocks that, in long

run, tends to be created at the beginning of the free list as it happens in case of first-fSELF

REFRENTIAL STRUCTURES

Self-Referential structures are those structures that have one or more pointers which point to the same

type of structure, as their member.

In other words, structures pointing to the same type of structures are self- referential in nature.

Example: struct node {

int data1;

char data2;

struct node* link;

};

int main()

{

struct node ob; return 0;

https://www.geeksforgeeks.org/structures-c/

156

}

In the above example ‘link’ is a pointer to a structure of type ‘node’. Hence, the structure ‘node’ is a

self-referential structure with ‘link’ as the referencing pointer.

An important point to consider is that the pointer should be initialized properly before accessing,

as by default it contains garbage value.

157

Types of Self Referential Structures

1. Self Referential Structure with Single Link

2. Self Referential Structure with Multiple Links

Self Referential Structure with Single Link: These structures can have only one self-pointer as their

member. The following example will show us how to connect the objects of a self-referential

structure with the single link and access the corresponding data members. The connection formed

is shown in the following figure.

Self Referential Structure with Multiple Links: Self referential structures with multiple links can

have more than one self-pointers. Many complicated data structures can be easily constructed using

these structures. Such structures can easily connect to more than one nodes at a time. The

following example shows one such structure with more than one links.

The connections made in the above example can be understood using the following figure.

struct node { int data;

struct node* prev_link; struct node* next_link;

};

158

DYNAMIC MEMEORY ALLOCATION

Since C is a structured language, it has some fixed rules for programming. One of it includes changing

the size of an array. An array is collection of items stored at continuous memory locations.

As it can be seen that the length (size) of the array above made is 9. But what if there is a requirement

to change this length (size). For Example,

 If there is a situation where only 5 elements are needed to be entered in this array. In this case, the

remaining 4 indices are just wasting memory in this array. So there is a requirement to lessen the

length (size) of the array from 9 to 5.

 Take another situation. In this, there is an array of 9 elements with all 9 indices filled. But there is

a need to enter 3 more elements in this array. In this case 3 indices more are required. So the length

(size) of the array needs to be changed from 9 to 12.

This procedure is referred to as Dynamic Memory Allocation in C.

C Dynamic Memory Allocation can be defined as a procedure in which the size of a data structure

(like Array) is changed during the runtime.

C provides some functions to achieve these tasks. There are 4 library functions provided by C defined

under <stdlib.h> header file to facilitate dynamic memory allocation in C programming. They are:

1. malloc()

2. calloc()

3. free()

4. realloc()

159

malloc() method

“malloc” or “memory allocation” method in C is used to dynamically allocate a single large block of

memory with the specified size. It returns a pointer of type void which can be cast into a pointer of

any form. It initializes each block with default garbage value.

Syntax:

ptr = (cast-type*) malloc(byte-size)

For Example:

#include <stdio.h> #include <stdlib.h>

int main()

{

// This pointer will hold the

// base address of the block created int* ptr;

int n, i;

// Get the number of elements for the array n = 5;

printf("Enter number of elements: %d\n", n);

ptr = (int*) malloc(100 * sizeof(int));

Since the size of int is 4 bytes, this statement will allocate 400 bytes of

memory. And, the pointer ptr holds the address of the first byte in the

allocated memory.

160

// Dynamically allocate memory using malloc() ptr = (int*)malloc(n * sizeof(int));

// Check if the memory has been successfully

// allocated by malloc or not if (ptr == NULL) {

printf("Memory not allocated.\n"); exit(0);

}

else {

// Memory has been successfully allocated printf("Memory successfully allocated using malloc.\n");

// Get the elements of the array for (i = 0; i < n; ++i) {

ptr[i] = i + 1;

}

// Print the elements of the array printf("The elements of the array are: "); for (i = 0; i < n; ++i) {

printf("%d, ", ptr[i]);

}

}

return 0;

}

calloc() method

“calloc” or “contiguous allocation” method in C is used to dynamically allocate the specified number

of blocks of memory of the specified type. It initializes each block with a default value ‘0’.

161

Syntax:

162

ptr = (cast-type*)calloc(n, element-size);

For Example:

#include <stdio.h> #include <stdlib.h>

int main()

{

// This pointer will hold the

// base address of the block created int* ptr;

int n, i;

// Get the number of elements for the array n = 5;

printf("Enter number of elements: %d\n", n);

// Dynamically allocate memory using calloc() ptr = (int*)calloc(n, sizeof(int));

// Check if the memory has been successfully

// allocated by calloc or not if (ptr == NULL) {

printf("Memory not allocated.\n");

ptr = (float*) calloc(25, sizeof(float));

This statement allocates contiguous space in memory for 25 elements

each with the size of the float.

163

exit(0);

}

else {

// Memory has been successfully allocated printf("Memory successfully allocated using calloc.\n");

// Get the elements of the array for (i = 0; i < n; ++i) {

ptr[i] = i + 1;

}

// Print the elements of the array printf("The elements of the array are: "); for (i = 0; i < n; ++i) {

printf("%d, ", ptr[i]);

}

}

return 0;

}

free() method

“free” method in C is used to dynamically de-allocate the memory. The memory allocated using

functions malloc() and calloc() is not de- allocated on their own. Hence the free() method is used,

whenever the dynamic memory allocation takes place. It helps to reduce wastage of memory by

freeing it.

Syntax:

free(ptr);

164

Example:

#include <stdio.h> #include <stdlib.h> int main()

{

// This pointer will hold the

// base address of the block created int *ptr, *ptr1;

int n, i;

// Get the number of elements for the array n = 5;

printf("Enter number of elements: %d\n", n);

// Dynamically allocate memory using malloc()

165

ptr = (int*)malloc(n * sizeof(int));

// Dynamically allocate memory using calloc() ptr1 = (int*)calloc(n, sizeof(int));

// Check if the memory has been successfully

// allocated by malloc or not

if (ptr == NULL || ptr1 == NULL) { printf("Memory not allocated.\n"); exit(0);

}

else {

// Memory has been successfully allocated printf("Memory successfully allocated using malloc.\n");

// Free the memory free(ptr);

printf("Malloc Memory successfully freed.\n");

166

// Memory has been successfully allocated printf("\nMemory successfully allocated using calloc.\n");

// Free the memory free(ptr1);

printf("Calloc Memory successfully freed.\n");

}

return 0;

}

realloc() method

“realloc” or “re-allocation” method in C is used to dynamically change the memory allocation of a

previously allocated memory. In other words, if the memory previously allocated with the help of

malloc or calloc is insufficient, realloc can be used to dynamically re-allocate memory. re-

allocation of memory maintains the already present value and new blocks will be initialized with

default garbage value.

Syntax:

ptr = realloc(ptr, newSize);

where ptr is reallocated with new size 'newSize'.

167

If space is insufficient, allocation fails and returns a NULL pointer. #include <stdio.h>

#include <stdlib.h>

int main()

{

// This pointer will hold the

// base address of the block created int* ptr;

int n, i;

// Get the number of elements for the array n = 5;

printf("Enter number of elements: %d\n", n);

168

// Dynamically allocate memory using calloc() ptr = (int*)calloc(n, sizeof(int));

// Check if the memory has been successfully

// allocated by malloc or not if (ptr == NULL) {

printf("Memory not allocated.\n"); exit(0);

}

else {

// Memory has been successfully allocated printf("Memory successfully allocated using calloc.\n");

// Get the elements of the array for (i = 0; i < n; ++i) {

ptr[i] = i + 1;

}

169

// Print the elements of the array printf("The elements of the array are: "); for (i = 0; i < n; ++i) {

printf("%d, ", ptr[i]);

}

// Get the new size for the array n = 10;

printf("\n\nEnter the new size of the array: %d\n", n);

// Dynamically re-allocate memory using realloc() ptr = realloc(ptr, n * sizeof(int));

// Memory has been successfully allocated

printf("Memory successfully re-allocated using realloc.\n");

// Get the new elements of the array for (i = 5; i < n; ++i) {

ptr[i] = i + 1;

}

170

// Print the elements of the array printf("The elements of the array are: "); for (i = 0; i < n; ++i) {

printf("%d, ", ptr[i]);

}

free(ptr);

}

return 0;

}

LINKED LISTS

A linked list, in simple terms, is a linear collection of data elements. These data elements are

called nodes.

Linked list is a data structure which in turn can be used to implement other data structures.

171

In Fig, we can see a linked list in which every node contains two parts, an integer and a pointer

to the next node.

The left part of the node which contains data may include a simple data type, an array, or a

structure.

The right part of the node contains a pointer to the next node (or address of the next node in

sequence).

The last node will have no next node connected to it, so it will store a special value called NULL.

In Fig, the NULL pointer is represented by X.

While programming, we usually define NULL as –1. Hence, a NULL pointer denotes the end of

the list.

Linked lists contain a pointer variable START that stores the address of the first node in the list.

We can traverse the entire list using START which contains the address of the first node; the

next part of the first node in turn stores the address of its succeeding node.

Using this technique, the individual nodes of the list will form a chain of nodes.

If START = NULL, then the linked list is empty and contains no nodes.

In C, we can implement a linked list using the following code: struct node

{

int data;

172

struct node *next;

};

Let us see how a linked list is maintained in the memory.

• In order to form a linked list, we need a structure called node

which has two fields, DATA and NEXT.

• DATA will store the information part and NEXT will store the address of the next node in

sequence. Consider Fig. 6.2.

• In the figure, we can see that the variable START is used to store the address of the first

node. Here, in this example, START= 1, so the first data is stored at address 1, which is H.

• The corresponding NEXT stores the address of the next node, which is 4. So, we will look at

address 4 to fetch the next data item.

• The second data element obtained from address 4 is E.

• Again, we see the corresponding NEXT to go to the next node. From the entry in the

NEXT, we get the next address, that is 7, and fetch L as the data.

• We repeat this procedure until we reach a position where the NEXT entry contains –1 or

NULL, as this would denote the end of the linked list.

173

Advantages

Linked list have many advantages. Some of the very important advantages are:

• Linked Lists are dynamic data structure: That is, they can grow or shrink during the execution of

a program.

• Efficient memory utilization: Here, memory is not pre- allocated. Memory is allocated whenever

it is required. And it is deallocated when it is no longer needed.

• Insertion and deletions are easier and efficient: Linked lists provide flexibility in inserting data

item at a specified position and deletion of a data item from the given position.

• Many complex applications can be easily carried out with linked lists.

174

Disadvantages

• More Memory: If the numbers of fields are more, then more memory space is needed.

• Access to an arbitrary data item is little bit cumbersome and also time consuming.

Types of Linked List

Following are the various flavours of linked list.

• Simple Linked List − Item Navigation is forward only.

• Doubly Linked List − Items can be navigated forward and backward way.

• Circular Linked List − Last item contains link of the first element as next and and first element

has link to last element as prev.

Basic Operations

• Insertion − add an element at the beginning of the list.

• Display − displaying complete list.

• Search − search an element using given key.

• Delete − delete an element using given key

SINGLY LINKED Lists

• A singly linked list is the simplest type of linked list in which every node contains some data

and a pointer to the next node of the same data type.

• A singly linked list allows traversal of data only in one way. Figure 6.7 shows a singly linked

list

175

LINKED LIST OPERATIONS

Traversing a Linked List

• Traversing a linked list means accessing the nodes of the list in order to perform some

processing on them.

• a linked list always contains a pointer variable START which stores the address of the

first node of the list. End of the list is marked by storing NULL or –1 in the NEXT field of the

last node.

• For traversing the linked list, we also make use of another pointer variable PTR which

points to the node that is currently being accessed.

• The algorithm to traverse a linked list is shown in Fig. 6.8.

• In this algorithm, we first initialize PTR with the address of START. So now, PTR points to

the first node of the linked list.

176

 Then in Step 2, a while loop is executed which is repeated till PTR processes the last node,

that is until it encounters NULL.

 In Step 3, we apply the process (e.g., print) to the current node, that is, the node pointed by

PTR.

• In Step 4, we move to the next node by making the PTR variable point to the node

whose address is stored in the NEXT field.

Searching for a Value in a Linked List

Consider the linked list shown in Fig. 6.11. If we have VAL = 4, then the flow of the algorithm

can be explained as shown in the figure.

177

Steps to create a linked list

Step 1 : Include alloc.h Header File #include<alloc.h>

1. We don‟t know, how many nodes user is going to create once he execute the program.

2. In this case we are going to allocate memory using Dynamic Memory Allocation functions

malloc.

3. Dynamic memory allocation functions are included in alloc.h

Step 2 : Define Node Structure

We are now defining the new global node which can be accessible through any of the function.

struct node

{ int data;

struct node *next;

}*start=NULL;

Step 3 : Create Node using Dynamic Memory Allocation .Now we are creating one node dynamically

using malloc function.We don‟t have prior knowledge about number of nodes , so we are calling

malloc function to create node at run time.

new_node=(struct node *)malloc(sizeof(struct node));

Fill Information in newly Created Node ,Now we are accepting value from the user using scanf.

Accepted Integer value is stored in the data field. Whenever we create new node , Make its Next

Field

http://www.c4learn.com/dynamic-memory-allocation-malloc-calloc.html
http://www.c4learn.com/dynamic-memory-allocation-malloc-calloc.html

178

as NULL. printf("Enter the data : "); scanf("%d",&new_node-

>data);

Step 4 : if(start==NULL) then new_node -> next = NULL; start = new_node;

otherwise ptr=start; while(ptr->next!=NULL) ptr=ptr->next;

ptr->next = new_node; new_node->next=NULL;

step 5:continue this process till while(num!=-1)

Inserting a New Node in a Linked List

• Case 1: The new node is inserted at the beginning.

• Case 2: The new node is inserted at the end.

• Case 3: The new node is inserted after a given node.

CASE 1: Inserting a Node at the Beginning of a Linked List

• Consider the linked list shown in Fig. 6.12. Suppose we want to add a new node with data 9

and

• add it as the first node of the list. Then the following changes will be done in the linked list.

179

• In Step 1, we first check whether memory is available for the new node. If the free memory

has exhausted, then an OVERFLOW message is printed.

• Otherwise, if a free memory cell is available, then we allocate space for the new node.

• Set its DATA part with the given VAL and the next part is initialized with the address of the

first node of the list, which is stored in START.

180

• Now, since the new node is added as the first node of the list, it will now be known as the

START node, that is, the START pointer variable will now hold the address of the

NEW_NODE.

Note the following two steps:

• Step 2: SET NEW_NODE = AVAIL

• Step 3: SET AVAIL = AVAIL -> NEXT

• These steps allocate memory for the new node.

Program

node *insert_beg(node *start)

{

node *new_node; int num;

printf("\n Enter the data : "); scanf("%d", &num);

new_node = (node *)malloc(sizeof(node)); new_node -> data = num;

new_node -> next = start; start = new_node;

return start;

}

CASE 2: Inserting a Node at the End of a Linked List

181

• Suppose we want to add a new node with data 9 as the last node of the list. Then the following

changes will be done in the linked list.

182

 In Step 6, we take a pointer variable PTR and initialize it with START. That is, PTR now points

to the first node of the linked list.

183

 In the while loop, we traverse through the linked list to reach the last node.

 Once we reach the last node, in Step 9, we change the NEXT pointer of the last node to store the

address of the new node.

program

struct node *insert_end(struct node *start)

{

struct node *ptr, *new_node; int num;

printf("\n Enter the data : "); scanf("%d", &num);

new_node = (node *)malloc(sizeof(node)); new_node -> data = num;

new_node -> next = NULL; ptr = start;

while(ptr -> next != NULL) ptr = ptr -> next;

ptr -> next = new_node; return start;

}

 CASE 3: Inserting a Node After a Given Node in a Linked List

• Consider the linked list shown in Fig. 6.17. Suppose we want to add a new node with value 9

after the node containing data 3

184

• In Step 5, we take a pointer variable PTR and initialize it with START. That is, PTR now points

to the first node of the linked list.

• Then we take another pointer variable PREPTR which will be used to store the address of the

node preceding PTR.

• Initially, PREPTR is initialized to PTR.

• So now, PTR,PREPTR, and START are all pointing to the first node of the linked list.

• In the while loop, we traverse through the linked list to reach the node that has its value equal to

NUM.

• We need to reach this node because the new node will be inserted after this node.

185

• Once we reach this node, in Steps 10 and 11, we change the NEXT pointers in such a way that

new node is inserted after the desired node.

186

Program

node *insert_after(node *start)

{

187

node *new_node, *ptr, *preptr; int num, val;

printf("\n Enter the data : "); scanf("%d", &num);

printf("\n Enter the value after which the data has to be inserted : "); scanf("%d", &val);

new_node = (node *)malloc(sizeof(node)); new_node -> data = num;

ptr = start; preptr = ptr;

while(preptr -> data != val)

{

preptr = ptr;

ptr = ptr -> next;

}

preptr -> next=new_node; new_node -> next = ptr; return start;

}

Deleting a Node from a Linked List

188

• We will consider three cases and then see how deletion is done in each case.

• Case 1: The first node is deleted.

• Case 2: The last node is deleted.

• Case 3: The node after a given node is deleted.

CASE 1:Deleting the First Node from a Linked List

• Before we describe the algorithms in all these three cases, let us first discuss an important term

called UNDERFLOW.

• Underflow is a condition that occurs when we try to delete a node from a linked list that is empty.

• This happens when START = NULL or when there are no more nodes to delete.

• Note that when we delete a node from a linked list, we actually have to free the memory occupied

by that node.

• The memory is returned to the free pool so that it can be used to store other programs and data.

Whatever be the case of deletion, we always change the AVAIL pointer so that it points to the

address that has been recently vacated.

189

• If START = NULL, then it signifies that there are no nodes in the list and the control is

transferred to the last statement of the algorithm.

• if there are nodes in the linked list, then we use a pointer variable PTR that is set to point to the

first node of the list.

• For this, we initialize PTR with START that stores the address of the first node of the list.

• In Step 3, START is made to point to the next node in sequence and finally the memory

occupied by the node pointed by PTR (initially the first node of the list) is freed and returned

to the free pool.

Program

struct node *delete_beg(node *start)

{

struct node *ptr; ptr = start;

start = start -> next;

190

free(ptr); return start;

}

CASE2: Deleting the Last Node from a Linked List

• Consider the linked list shown in Fig. 6.22. Suppose we want to delete the last node from the

linked list, then the following changes will be done in the linked list.

• Figure 6.23 shows the algorithm to delete the last node from a linked list. In Step 2, we take a

pointer variable PTR and initialize it with START.

191

• That is, PTR now points to the first node of the linked list. In the while loop, we take another

pointer variable PREPTR such that it always points to one node before the PTR.

• Once we reach the last node and the second last node, we set the NEXT pointer of the second last

node to NULL, so that it now becomes the (new) last node of the linked list.

• The memory of the previous last node is freed and returned back to the free pool

Program

node *delete_end(node *start)

{

node *ptr, *preptr; ptr = start;

while(ptr -> next != NULL)

192

{

preptr = ptr;

ptr = ptr -> next;

}preptr -> next = NULL; free(ptr);

return start;}

CASE 3:Deleting the Node After a Given Node in a Linked List

• In Step 2, we take a pointer variable PTR and initialize it with START. That is, PTR now points

to the first node of the linked list.

• In the while loop, we take another pointer variable PREPTR such that it always points to one

node before the PTR.

• Once we reach the node containing VAL and the node

• succeeding it, we set the next pointer of the node containing VAL to the address contained in next

field of the node succeeding it.

• The memory of the node succeeding the given node is freed and returned back to the free pool.

193

• Consider the linked list shown in Fig. 6.24.

• Suppose we want to delete the node that succeeds the node which contains data value 4. Then the

following changes will be done in the linked list

•

Program

node *delete_after(node *start)

{

node *ptr, *preptr; int val;

printf("\n Enter the value after which the node has to deleted : ");

194

scanf("%d", &val); ptr = start;

preptr = ptr;

while(preptr -> data != val)

{

preptr = ptr;

ptr = ptr -> next;

}

preptr -> next=ptr -> next; free(ptr);

return start;

}

CIRCULAR LINKED LISTs

• In a circular linked list, the last node contains a pointer to the first node of the list.

• We can have a circular singly linked list as well as a circular doubly linked list.

• While traversing a circular linked list, we can begin at any node and traverse the list in any

direction, forward or backward, until we reach the same node where we started.

• Thus, a circular linked list has no beginning and no ending. Figure

6.26 shows a circular linked list.

195

Inserting a New Node in a Circular Linked List

• Case 1: The new node is inserted at the beginning of the circular linked list.

• Case 2: The new node is inserted at the end of the circular linked list.

CASE 1:Inserting a Node at the Beginning of a Circular Linked List

• Consider the linked list shown in Fig. 6.29. Suppose we want to add a new node with

 data 9 as the first node of the list.

 Figure 6.30 shows the algorithm to insert a new node at the beginning of a linked list. In Step 1,

we first check whether memory

196

is available for the new node. If the free memory has exhausted, then an OVERFLOW message is

printed.

 Otherwise, if free memory cell is available, then we allocate space for the new node.

 Set its DATA part with the given VAL and the NEXT part is initialized with the address of the

first node of the list, which is stored in START.

 Now, since the new node is added as the first node of the list, it will now be known as the START

node,that is, the START pointer variable will now hold the address of the NEW_NODE.

 While inserting a node in a circular linked list, we have to use a while loop to traverse to the last

node of the list.

 Because the last node contains a pointer to START, its NEXT field is updated so that after

insertion it points to the new node which will be now known as START

197

Program insert new node at beginning

struct node *insert_beg(struct node *start)

{

struct node *new_node, *ptr; int num;

printf("\n Enter the data : "); scanf("%d", &num);

new_node = (struct node *)malloc(sizeof(struct node)); new_node -> data = num;

ptr = start;

while(ptr -> next != start) ptr = ptr -> next;

ptr -> next = new_node; new_node -> next = start; start = new_node;

return start;

}

CASE 2: Inserting a Node at the End of a Circular Linked List

198

• Figure 6.32 shows the algorithm to insert a new node at the end of a circular linked list.

• In Step 6, we take a pointer variable PTR and initialize it with START.

• That is, PTR now points to the first node of the linked list.

• In the while loop, we traverse through the linked list to reach the last node.

• Once we reach the last node, in Step 9, we change the NEXT pointer of the last node to store the

address of the new node.

• Remember that the NEXT field of the new node contains the address of the first node which is

denoted by START.

Program

struct node *insert_end(struct node *start)

199

{

struct node *ptr, *new_node; int num;

printf("\n Enter the data : "); scanf("%d", &num);

new_node = (struct node *)malloc(sizeof(struct node)); new_node -> data = num;

ptr = start;

while(ptr -> next != start) ptr = ptr -> next;

ptr -> next = new_node; new_node -> next = start; return start;}

Deleting a Node from a Circular Linked List

• Case 1: The first node is deleted.

• Case 2: The last node is deleted.

CASE 1: Deleting the First Node from a Circular Linked List

200

• In Step 1 of the algorithm, we check if the linked list exists or not. If START = NULL, then it

signifies that there are no nodes in the list and the control is transferred to the last statement of the

algorithm.

• However, if there are nodes in the linked list, then we use a pointer variable PTR which will be

used to traverse the list to ultimately reach the last node.

• In Step 5, we change the next pointer of the last node to point to the second node of the circular

linked list.

• In Step 6, the memory occupied by the first node is freed.

• Finally, in Step 7, the second node now becomes the first node of the list and its address is stored

in the pointer variable START.

Program

struct node *delete_beg(struct node *start)

{

201

struct node *ptr;

ptr = start;

while(ptr -> next != start) ptr = ptr -> next;

ptr -> next = start -> next; free(start);

start = ptr -> next; return start;

}

CASE 2: Deleting the Last Node from a Circular Linked List

• In Step 2, we take a pointer variable PTR and initialize it with START.

• That is,PTR now points to the first node of the linked list.

202

• In the while loop, we take another pointer variable PREPTR such that PREPTR always points to

one node before PTR.

• Once we reach the last node and the second last node, we set the next pointer of the second last

node to START, so that it now becomes the (new) last node of the linked list.

• The memory of the previous last node is freed and returned to the free pool.

program

program

struct node *delete_end(struct node *start)

{

203

struct node *ptr, *preptr; ptr = start;

while(ptr -> next != start)

{

preptr = ptr;

ptr = ptr -> next;

}

preptr -> next = ptr -> next; free(ptr);

return start;}

DOUBLY LINKED LISTS

• A doubly linked list or a two-way linked list is a more complex type of linked list which contains

a pointer to the next as well as the previous node in the sequence.

• Therefore, it consists of three parts—data, a pointer to the next node, and a pointer to the

previous node .

204

205

• The PREV field of the first node and the NEXT field of the last node will contain NULL.

• The PREV field is used to store the address of the preceding node, which enables us to traverse

the list in the backward direction.

• Thus, we see that a doubly linked list calls for more space per node and more expensive basic

operations.

• However, a doubly linked list provides the ease to manipulate the elements of the list as it

maintains pointers to nodes in both the directions (forward and backward).

• The main advantage of using a doubly linked list is that it makes searching twice as efficient.

Inserting a New Node in a Doubly Linked List

• Case 1: The new node is inserted at the beginning.

• Case 2: The new node is inserted at the end.

• Case 3: The new node is inserted after a given node.

CASE 1: Inserting a Node at the Beginning of a Doubly Linked List

=

206

• In Step 1, we first check whether memory is available for the new node.

• If the free memory has exhausted, then an OVERFLOW message is printed.

• Otherwise, if free memory cell is available, then we allocate space for the new node.

• Set its DATA part with the given VAL and the NEXT part is initialized with the address of the

first node of the list, which is stored in START.

• Now, since the new node is added as the first node of the list, it will now be known as the START

node, that is, the START pointer variable will now hold the address of NEW_NODE.

program

struct node *insert_beg(struct node *start)

{

struct node *new_node;

207

int num;

printf("\n Enter the data : "); scanf("%d", &num);

new_node = (struct node *)malloc(sizeof(struct node)); new_node -> data = num;

start -> prev = new_node;

new_node -> next = start;

new_node -> prev = NULL; start = new_node;

return start;

}

CASE 2: Inserting a Node at the End end of a Doubly Linked List

• Figure 6.42 shows the algorithm to insert a new node at the end of a doubly linked list. In Step 6,

we take a pointer variable PTR and initialize it with START.

208

• In the while loop, we traverse through the linked list to reach the last node.

• Once we reach the last node, in Step 9, we change the NEXT pointer of the last node to store the

address of the new node. Remember that the NEXT field of the

• new node contains NULL which signifies the end of the linked list.

• The PREV field of the NEW_NODE will be set so that it points to the node pointed by PTR (now

the second last node of the list).

Program

struct node *insert_end(struct node *start)

{

struct node *ptr, *new_node; int num;

209

printf("\n Enter the data : "); scanf("%d", &num);

new_node = (struct node *)malloc(sizeof(struct node)); new_node -> data = num;

ptr=start;

while(ptr -> next != NULL) ptr = ptr -> next;

ptr -> next = new_node; new_node -> prev = ptr; new_node -> next = NULL; return start;

}

CASE 3: Inserting a Node After a Given Node in a Doubly Linked List

Figure 6.43 shows the algorithm to insert a new node after a given node in a doubly linked list.

210

In Step 5, we take a pointer PTR and initialize it with START. That is, PTR now points to the first

node of the linked list. In the while loop, we traverse through the linked list to reach the node that

has its value equal to NUM.

We need to reach this node because the new node will be inserted after this node. Once we reach this

node, we change the NEXT and PREV fields in such a way that the new node is inserted after the

desired node.

Program

struct node *insert_after(struct node *start)

{

211

struct node *new_node, *ptr; int num, val;

printf("\n Enter the data : "); scanf("%d", &num);

printf("\n Enter the value after which the data has to be inserted : "); scanf("%d", &val);

new_node = (struct node *)malloc(sizeof(struct node)); new_node -> data = num;

ptr = start;

while(ptr -> data != val) ptr = ptr -> next; new_node -> prev = ptr;

new_node -> next = ptr -> next; ptr -> next -> prev = new_node; ptr -> next = new_node;

return start;

}

Deleting a Node from a Doubly Linked List

• Case 1: The first node is deleted.

• Case 2: The last node is deleted.

• Case 3: The node after a given node is deleted.

CASE 1: Deleting the First Node from a Doubly Linked List

• When we want to delete a node from the beginning of the list, then the following changes will be

done in the linked list.

212

• Figure 6.48 shows the algorithm to delete the first node of a doubly linked list.

• In Step 1 of the algorithm, we check if the linked list exists or not. If START =NULL, then

it signifies that there are no nodes in the list and the control is transferred to the last statement of

the algorithm.

• However, if there are nodes in the linked list, then we use a temporary pointer variable PTR that

is set to point to the first node of the list.

• For this, we initialize PTR with START that stores the address of the first node of the list.

• In Step 3, START is made to point to the next node in sequence and finally the memory occupied

by PTR (initially the first node of the list) is freed and returned to the free pool.

Program

struct node *delete_beg(struct node *start)

{

struct node *ptr; ptr = start;

start = start -> next;

213

start -> prev = NULL; free(ptr);

return start;

}

CASE 2: Deleting the Last Node from a Doubly Linked List

• Suppose we want to delete the last node from the linked list, then the following changes will be

done in the linked list.

• Figure 6.50 shows the algorithm to delete the last node of a doubly linked list.

214

• In Step 2, we take a pointer variable PTR and initialize it with START.

• That is, PTR now points to the first node of the linked list. The while loop traverses through the

list to reach the last node.

• Once we reach the last node, we can also access the second last node by taking its address from

the PREV field of the last node.

• To delete the last node, we simply have to set the next field of second last node to NULL, so that

it now becomes the (new) last node of the linked list.

• The memory of the previous last node is freed and returned to the free pool.

Program

struct node *delete_end(struct node *start)

{

struct node *ptr; ptr = start;

while(ptr -> next != NULL) ptr = ptr -> next;

ptr -> prev -> next = NULL; free(ptr);

return start;

}

CASE 3 : Deleting the Node After a Given Node in a Doubly Linked List

215

216

In Step 2, we take a pointer variable PTR and initialize it with

217

START. That is, PTR now points to the first node of the doubly linked list. The while loop traverses

through the linked list to reach the given node.

• Once we reach the node containing VAL, the node

• succeeding it can be easily accessed by using the address stored in its NEXT field. The NEXT

field of the given node is set to contain the contents in the NEXT field of the succeeding node.

• Finally, the memory of the node succeeding the given node is freed and returned to the free

pool.

Program

struct node *delete_after(struct node *start)

{

struct node *ptr, *temp; int val;

printf("\n Enter the value after which the node has to deleted : "); scanf("%d", &val);

ptr = start;

while(ptr -> data != val) ptr = ptr -> next;

temp = ptr -> next;

ptr -> next = temp -> next; temp -> next -> prev = ptr; free(temp);

return start;

}

Header Linked Lists

218

• A header linked list is a special type of linked list which contains a header node at the beginning

of the list. So, in a header linked list, START will not point to the first node of the list but START

will contain the address of the header node.

• The following are the two variants of a header linked list:

• Grounded header linked list which stores NULL in the next field of the last node.

• Circular header linked list which stores the address of the header node in the next field of

the last node. Here, the header node will denote the end of the list.

Application of linked list-Polynomial

Polynomial Addition

Linked list are widely used to represent and manipulate polynomials. Polynomials are the expressions

containing number of terms with nonzero coefficient and exponents.In the linked representation of

polynomials, each term is considered as a node. And such a node contains three fields

http://www.ktustudents.in/
http://www.ktustudents.in/
http://www.ktustudents.in/
http://www.ktustudents.in/
http://www.ktustudents.in/
http://www.ktustudents.in/
http://www.ktustudents.in/

219

• Coefficient field

. Exponent field

• Link field

The coefficient field holds the value of the coefficient of a term and the exponent field contains the

exponent value of the term. And the link field contains the address of the next term in the

polynomial. The polynomial node structure is

Coefficient(coeff)

Exponent(expo)

Address of

the

next

node(n

ext)

Algorithm

Two polynomials can be added. And the steps involved in adding two polynomials are given below

1. Read the number of terms in the first polynomial P

2. Read the coefficient and exponent of the first polynomial

3. Read the number of terms in the second polynomial Q

4. Read the coefficient and exponent of the second polynomial

5. Set the temporary pointers p and q to travers the two polynomials respectively

6. Compare the exponents of two polynomials starting from the first nodes

a) If both exponents are equal then add the coefficient and store it in the resultant linked list

220

b) If the exponent of the current term in the first polynomial P is less than the exponent of the

current term of the second polynomial then added the second term to the resultant linked list. And,

move the pointer q to point to the next node in the second polynomial Q.

c) If the exponent of the current term in the first polynomial P is greater than the exponent of the

current term in the second polynomial Q, then the current term of the first polynomial is added to

the resultant linked list. And move the pointer p to the next node.

d) Append the remaining nodes of either of the polynomials to the resultant linked list.

Let us illustrate the way the two polynomials are added. Let p and q be two polynomials having three

terms each.

P=3x2+2x+7 Q=5x3+2x2+x

These two polynomial can be represented as

http://www.ktustudents.in/
http://www.ktustudents.in/
http://www.ktustudents.in/
http://www.ktustudents.in/
http://www.ktustudents.in/
http://www.ktustudents.in/

221

Step 1. Compare the exponent of p and the corresponding

exponent of q. Here,

expo(p)<expo(q)

So, add the terms pointed to by q to the resultant list. And now advance the q pointer.

Step 2.

222

132

Compare the exponent of the current terms. Here,

expo(p)=expo(q)

So, add the coefficients of these two terms and link this to the resultant list. And, advance the pointers

p and q to their next nodes.

Compare the exponents of the current terms again expo(p)=expo(q)

So, add the coefficients of these two terms and link this to the resultant linked list. And, advance the

pointers to their next nodes. Q reaches the NULL and p points the last node.

133

There is no node in the second polynomial to compare with. So, the last node in the first polynomial is

added to the end of the resultant linked list.

Step 5. Display the resultant linked list. The resultant linked list is pointed to by the pointer R

Algorithm for Polynomial Multiplication

1. Read the number of terms in the first polynomial

2. Read the coefficient and exponent of the first polynomial

3. Read the number of terms in the second polynomial

134

4. Read the coefficient and exponent of the second polynomial

5. if one of the list is empty then the nonempty linked list is added to the resultant linked list

Otherwise goto step 6.

6. for each term of the first list

135

a) multiply each term of the second linked list with a term of the first linked list

b) add the new term to the resultant polynomial

c) reposition the pointer to the starting of the second linked list

d) go to the next node

e) adds a term to the polynomial in the descending order of the exponent

7. Display the resultant linked list

Linked list implementation of stack

Instead of using array, we can also use linked list to implement stack. Linked list allocates the memory

dynamically. However, time complexity in both the scenario is same for all the operations i.e.

push, pop and peek.

In linked list implementation of stack, the nodes are maintained non- contiguously in the memory.

Each node contains a pointer to its immediate successor node in the stack. Stack is said to be

overflown if the space left in the memory heap is not enough to create a node.

136

The top most node in the stack always contains null in its address field. Lets discuss the way in which,

each operation is performed in linked list implementation of stack.

Adding a node to the stack (Push operation)

Adding a node to the stack is referred to as push operation. Pushing an element to a stack in linked list

implementation is different from that of an array implementation. In order to push an element onto

the stack, the following steps are involved.

1. Create a node first and allocate memory to it.

2. If the list is empty then the item is to be pushed as the start node of the list. This includes

assigning value to the data part of the node and assign null to the address part of the node.

3. If there are some nodes in the list already, then we have to add the new element in the beginning

of the list (to not violate the property of the stack). For this purpose, assign the address of the

starting element to the address field of the new node and make the new node, the starting node of

the list.

Time Complexity : o(1)

137

C implementation :

void push ()

{

int val;

struct node *ptr =(struct node*)malloc(sizeof(struct node)); if(ptr == NULL)

{

printf("not able to push the element");

}

else

{

printf("Enter the value"); scanf("%d",&val); if(head==NULL)

{

ptr->val = val;

ptr -> next = NULL; head=ptr;

}

else

{

ptr->val = val; ptr->next = head; head=ptr;

}

printf("Item pushed");

}

}

Deleting a node from the stack (POP operation)

Deleting a node from the top of stack is referred to

138

as pop operation. Deleting a node from the linked list

139

implementation of stack is different from that in the array implementation. In order to pop an element

from the stack, we need to follow the following steps :

1. Check for the underflow condition: The underflow condition occurs when we try to pop from

an already empty stack. The stack will be empty if the head pointer of the list points to null.

2. Adjust the head pointer accordingly: In stack, the elements are popped only from one end,

therefore, the value stored in the head pointer must be deleted and the node must be freed. The next

node of the head node now becomes the head node.

Time Complexity : o(n)

C implementation

void pop()

{

int item;

struct node *ptr;

if (head == NULL)

{

printf("Underflow");

}

else

{

item = head->val; ptr = head;

head = head->next; free(ptr);

printf("Item popped");

}

}

140

Display the nodes (Traversing)

Displaying all the nodes of a stack needs traversing all the nodes of the linked list organized in the

form of stack. For this purpose, we need to follow the following steps.

3. Copy the head pointer into a temporary pointer.

4. Move the temporary pointer through all the nodes of the list and print the value field attached to

every node.

Time Complexity : o(n)

C Implementation

void display()

{

int i;

struct node *ptr; ptr=head;

if(ptr == NULL)

{

printf("Stack is empty\n");

}

else

{

printf("Printing Stack elements \n"); while(ptr!=NULL)

{

printf("%d\n",ptr->val); ptr = ptr->next;

}

}

}

141

Linked List implementation of Queue

Due to the drawbacks discussed in the previous section of this tutorial, the array implementation

cannot be used for the large scale applications where the queues are implemented. One of the

alternative of array implementation is linked list implementation of queue.

The storage requirement of linked representation of a queue with n elements is o(n) while the time

requirement for operations is o(1).

In a linked queue, each node of the queue consists of two parts i.e. data part and the link part. Each

element of the queue points to its immediate next element in the memory.

In the linked queue, there are two pointers maintained in the memory i.e. front pointer and rear pointer.

The front pointer contains the address of the starting element of the queue while the rear pointer

contains the address of the last element of the queue.

Insertion and deletions are performed at rear and front end respectively. If front and rear both are

NULL, it indicates that the queue is empty.

The linked representation of queue is shown in the following figure.

Operation on Linked Queue

There are two basic operations which can be implemented on the linked queues. The operations are

Insertion and Deletion.

142

Insert operation

The insert operation append the queue by adding an element to the end of the queue. The new element

will be the last element of the queue.

Firstly, allocate the memory for the new node ptr by using the following statement.

Ptr = (struct node *) malloc (sizeof(struct node));

There can be the two scenario of inserting this new node ptr into the linked queue.

In the first scenario, we insert element into an empty queue. In this case, the condition front = NULL

becomes true. Now, the new element will be added as the only element of the queue and the next

pointer of front and rear pointer both, will point to NULL.

ptr -> data = item; if(front == NULL)

{

front = ptr; rear = ptr;

front -> next = NULL; rear -> next = NULL;

}

In the second case, the queue contains more than one element. The condition front = NULL becomes

false. In this scenario, we need to update the end pointer rear so that the next pointer of rear will

point to the new node ptr. Since, this is a linked queue, hence we also need to make the rear pointer

point to the newly added node ptr. We also need to make the next pointer of rear point to NULL.

rear -> next = ptr; rear = ptr;

rear->next = NULL;

143

In this way, the element is inserted into the queue. The algorithm and the C implementation is given as

follows.

Algorithm

o Step 1: Allocate the space for the new node PTR

o Step 2: SET PTR -> DATA = VAL

o Step 3: IF FRONT = NULL SET FRONT = REAR = PTR

SET FRONT -> NEXT = REAR -> NEXT = NULL ELSE

SET REAR -> NEXT = PTR SET REAR = PTR

SET REAR -> NEXT = NULL [END OF IF]

o Step 4: END

C Function

void insert(struct node *ptr, int item;)

{

ptr = (struct node *) malloc (sizeof(struct node)); if(ptr == NULL)

{

printf("\nOVERFLOW\n"); return;

}

else

{

ptr -> data = item; if(front == NULL)

{

front = ptr; rear = ptr;

front -> next = NULL;

144

rear -> next = NULL;

}

else

{

rear -> next = ptr; rear = ptr;

rear->next = NULL;

}

}

}

Deletion

Deletion operation removes the element that is first inserted among all the queue elements. Firstly, we

need to check either the list is empty or not. The condition front == NULL becomes true if the list

is empty, in this case , we simply write underflow on the console and make exit.

Otherwise, we will delete the element that is pointed by the pointer front. For this purpose, copy the

node pointed by the front pointer into the pointer ptr. Now, shift the front pointer, point to its next

node and free the node pointed by the node ptr. This is done by using the following statements.

ptr = front;

front = front -> next; free(ptr);

The algorithm and C function is given as follows.

Algorithm

o Step 1: IF FRONT = NULL Write " Underflow "

Go to Step 5 [END OF IF]

o Step 2: SET PTR = FRONT

145

o Step 3: SET FRONT = FRONT -> NEXT

o Step 4: FREE PTR

o Step 5: END

C Function

void delete (struct node *ptr)

{

if(front == NULL)

{

printf("\nUNDERFLOW\n"); return;

}

else

{

ptr = front;

front = front -> next; free(ptr);

}

}

Memory management

Basic task of any program is to manipulate data.These data should be stored in memory during their

manipulation. There are two memory management schemes for the storage allocations of data:

1. Static storage management

2. Dynamic storage management

2.1 Static storage management In case of static storage management scheme, the net amount of

memory required for various data for a program is allocated before the starting of the execution of

the program.Once memory is allocated, it neither can be extended nor can be returned to the

memory bank for the use of other programs at the same time.

146

2.2 Dynamic storage management

 Dynamic storage management scheme allows the user to allocate and deallocate as per the

necessity during the execution of programs.

 This dynamic memory management scheme is suitable in multiprogramming as well as single-

user environment where generally more than one program reside in the memory and their memory

requirement can be known only during their execution.

 Operating systems (OS) generally provides the service of dynamic memory management. The

data structure for implementing such a scheme is linked list.

 Various principles on which the dynamic memory management scheme is based on

3. Allocation schemes: here we discuss how a request for a memory block will be serviced.

(e) Fixed block allocation

(f) Variable block allocation.

(i) First fit and its variant, (ii) Next fit , (iii) Best fit, (iv) Worst fit

4. Deallocation schemes: here we discuss how to return a memory block to the memory bank

whenever it is no more required.

(zzzzz) Random deallocation

(aaaaaa) Ordered deallocation.

5. Garbage collection: to maintain a memory bank so that it can be utilized efficiently.

2. Allocation schemes

 Memory bank or pool of free storages is often a collection of non- contiguous blocks of memory.

147

 Their linearity can be maintained by means of pointers between one block to another or in other

words, memory bank is a linked list where links are to maintain the adjacency of blocks.

 Regarding the size of the blocks there are two practices: fixed block storage and variable block

storage. Let us discuss each of them individually.

 2.1 Fixed Block Storage:

Here each block is of the same size.

 The size is determined by the system manager (user).

 Here, the memory manager (a program of OS) maintains a pointer AVAIL which points a

list of non-contiguous memory blocks.

 A user program communicates with the memory manager by means of two functions

GETNODE(NODE) and RETURNNODE(ptr)

 Procedure GETNODE(NODE)

Steps

4. Start

5. If (AVAIL = NULL) then

Print "The memory is insufficient"

148

6. Else

ptr = AVAIL

AVAIL = AVAIL->LINK

149

Return(ptr)

7. Endlf

8. Stop

 Whenever a memory block is no more required, it can be returned to the memory bank through a

procedure RETURNNODE()

 Procedure RETURNNODE(PTR)

 Steps

3. Start

4. ptrl = AVAIL

5. While (ptrl->LINK # NULL) do ptrl = ptr1->LINK

6. EndWhile

7. ptr1->LINK= PTR

8. ptr->LINK= NULL

9. Stop

 Fixed block allocation is the simplest strategy. But the main drawback of this strategy is the

wastage of space.

 For example, suppose each memory block is of size 1 K (1024 bytes); now for a request of

memory block, say, of size 1.1 K we have to avail 2 blocks (that is 2 K memory space) thus

wasting 0.9 K memory space.

3.2 Variable Block Storage

 Here, the memory manager (a program of OS) maintains a pointer AVAIL which points a list of

non-contiguous memory blocks.

 To overcome the disadvantages of fixed block storage, we can maintain blocks of variable sizes,

instead of fixed size blocks.

 Procedure GETNODE(NODE)

150

Steps

7. Start

8. If (AVAIL = NULL) then

1. Print "Memory bank is insufficient"

2. Exit

3. Endlf

4. ptr = AVAIL

5. While (ptr->LINK ≠NULL) and (ptr->SIZE < SIZEOF(NODE)) do

1. ptrl = ptr

2. ptr = ptr->LINK

6. EndWhile

7. If (ptr->LINK = NULL) and (ptr->SIZE < SIZEOF(NODE)) then

1. Print "Memory request is too large: Unable to serve"

8. Else

1. ptrl->LINK = ptr->LINK

o 2. Return(ptr)

9. Endlf 10.Stop

 This procedure assumes that blocks of memory are stored in ascending order of their sizes.

 Procedure RETURNNODE(PTR)

Steps

8. Start

9. ptrl = AVAIL

10. While (ptrl->SIZE < ptr->SIZE) and (ptrl->LINK # NULL)) do

1. ptr2 = ptrl

2. ptrl = ptrl->LINK

11. EndWhile

151

12. ptr2->LINK = PTR

13. PTR->LINK = ptrl

14. Stop

 The dynamic memory management system should provide the following services:

(d) Searching the memory for a block of requested size and servicing the request (allocation)

(e) Handling a free block when it is returned to the memory manager.

152

(f) Coalescing the smaller free blocks into larger block(s) (garbage collection and compaction).

3.2.1 Storage allocation strategies

 (a) First-fit allocation, (b) Best-fit allocation, (c) Worst-fit allocation, (d) Next-fit allocation

 First-fit storage allocation:

This is the simplest storage allocation strategy.

 Here the list of available storages will be searched and as soon as a free storage block of size

N will be found pointer of that block will be sent to the calling program after retaining the residue

space.

 For example, for a block of size 2 K, if the first-fit strategy found a block of 7 K, then after

retaining a storage block of size 5 K, 2 K memory will be sent to the caller.

 Leads to fast allocation of memory space.

 Leads to memory waste

153

 Best-fit storage allocation

 This strategy will not allocate a block of size > N, as it is found in first- fit method, instead will

continue searching to find a suitable block so that the block size is closer to the block size of

request.

 Goal: find the smallest memory block into which the job will fit

 Results in least wasted space.

 Slower in making allocation

 For example, for a request of 2 K, if the list contains the blocks of sizes, 1 K, 3 K, 7 K, 2.5 K, 5

K, then it will find the block of size 2.5 K as suitable block for allocation. From this block after

retaining 0.5 K, pointer for 2 K block will be returned.

 Worst-fit storage allocation

 Slower in making allocation

 Allocates the largest free available block to the new job

 Opposite of best-fit

 Best-fit finds a block which is small and nearest to the block size as 'requested, whereas, worst-fit

strategy is a reverse of it. It allocates the largest block available in the available storage list.

 The idea behind the worst-fit is to reduce the rate of production of small blocks which are quite

common when best-fit strategy is used for memory allocation.

 Next-fit storage allocation

 The idea behind the worst-fit is to reduce the rate of production of small blocks which are

quite common when best-fit strategy is used for memory allocation.

 Next-fit allocation strategy is a modification of first-fit strategy.

154

 Starts searching from last allocated block, for the next available block when a new job

arrives.

 In case of first-fit strategy, searching will always occur from beginning of the free list

whereas in next-fit strategy, search begins where the last allocation has been done; in this

strategy, pointer to the free list is saved following an allocation and is used to begin for the

subsequent request.

The idea of this strategy is to reduce the search by avoiding examination of smaller blocks that,

in long run, tends to be created at the beginning of the free list as it happens in case of first-f

155

Module 4 Trees and Graphs

Trees, Binary Trees-Tree Operations, Binary Tree Representation, Tree Traversals, Binary

Search Trees- Binary Search Tree Operations Graphs, Representation of Graphs, Depth First

Search and Breadth First Search on Graphs, Applications of Graphs

10. The tree has one node called root. The tree originates from this, and

hence it does not have any parent.

11. Each node has one parent only but can have multiple children.

12. Each node is connected to its children via edge.

Following diagram explains various terminologies used in a tree structure.

 Terminolo

gy

Description Example From Diagram

Root
Root is a special node in a tree. The

entire tree originates from it. It

does not have a parent.

Node A

Parent

Node

Parent node is an immediate

predecessor of a node.
B is parent of D & E

Child Node
All immediate successors of a node

are its children.
D & E are children of B

Leaf
Node which does not have any

child is called as leaf
H, I, J, F and G are leaf nodes

Edge
Edge is a connection between one

node to another. It is a line

between two nodes or a node and a

leaf.

Line between A & B is edge

Siblings
Nodes with the same parent are called

Siblings.
D & E are siblings

Path /

Traversi

ng

Path is a number of successive edges

from source node to destination

node.

A – B – E – J is path from node

A to E

Height of

Node

Height of a node represents the

number of edges on the longest

path between that node and a leaf.

A, B, C, D & E can have

height. Height of A is no.

of edges between A and

H, as that is the longest

path, which is 3. Height of

C is 1

Levels of

node

Level of a node represents the

generation of a node. If the root

node is at level 0, then its next

child node is at level 1, its

grandchild is at level 2, and so on

Level of H, I & J is 3. Level

of D, E, F & G is 2

Degree of

Node

Degree of a node represents the

number of children of a node.
Degree of D is 2 and of E is 1

152

 Sub tree Descendants of a node represent

subtree.

Nodes D, H, I represent one

subtree.

Types of Trees

Types of trees depend on the number of children a node has. There are two major tree

types:

 General Tree: A tree in which there is no restriction on the number of children a

node has, is called a General tree. Examples are Family tree, Folder Structure.

 Binary Tree: In a Binary tree, every node can have at most 2 children, left and

right. Here, utmost means whether the node has 0 nodes, 1 node or 2 nodes.

153

154

Binary trees are further divided into many

types based on its application.

 Full Binary Tree: If every node in a tree has either 0 or 2 children, then the tree is

called a full tree.

 Perfect Binary tree: It is a binary tree in which all interior nodes have two children

and all leaves have the same depth or same level.

 Binary Search Tree: It is a binary tree with binary search property. Binary search

property states that the value or key of the left node is less than its parent and value or

key of right node is greater than its parent. And this is true for all nodes.

155

156

Applications of trees

The following are the applications of trees:

o Storing naturally hierarchical data: Trees are used to store the data in the

hierarchical structure. For example, the file system. The file system stored on the disc

drive, the file and folder are in the form of the naturally hierarchical data and stored in

the form of trees.

o Organize data: It is used to organize data for efficient insertion, deletion and

searching. For example, a binary tree has a logN time for searching an element.

o Trie: It is a special kind of tree that is used to store the dictionary. It is a fast and

efficient way for dynamic spell checking.

o Heap: It is also a tree data structure implemented using arrays. It is used to

implement priority queues.

o B-Tree and B+Tree: B-Tree and B+Tree are the tree data structures used to

implement indexing in databases.

o Routing table: The tree data structure is also used to store the data in routing tables in

the routers.

157

Implementation of Tree

The tree data structure can be created by creating the nodes dynamically with the help of

the pointers. The tree in the memory can be represented as shown below:

The

above figure shows the representation of the tree data structure in the memory. In the

above structure, the node contains three fields. The second field stores the data; the

first field stores the address of the left child, and the third field stores the address of the

right child.

In programming, the structure of a node can be defined as:

struct node

{

int data;

struct node *leftChild; struct node

*rightChild;

};

158

Binary Search Tree Basic Operations

159

Step 1: Start

Step 2:If root is NULL

then create root node

return

Step 3:If root exists then

compare the data with node.data

Step 4:while until insertion position is located

Step 4.1:If data is greater than node.data

goto right subtree

Step 4.2:else

goto left subtree

Step 5:endwhile

Step 6:insert data

end If

The basic operations that can be performed on a binary search tree data structure, are the

following −

 Insert − Inserts an element in a tree/create a tree.

 Search − Searches an element in a tree.

Insert Operation

The very first insertion creates the tree. Afterwards, whenever an element is to be

inserted, first locate its proper location. Start searching from the root node, then if the

data is less than the key value, search for the empty location in the left subtree and

insert the data. Otherwise, search for the empty location in the right subtree and insert

the data.

Algorithm

160

Program

void insert(int data) {

struct node *tempNode = (struct node*) malloc(sizeof(struct node));

struct node *current; struct node

*parent;

tempNode->data = data; tempNode-

>leftChild = NULL; tempNode-

>rightChild = NULL;

//if tree is empty, create root node if(root == NULL) {

root = tempNode;

} else {

current = root; parent = NULL;

while(1) {

parent = current;

//go to left of the tree if(data < parent->data) {

current = current->leftChild;

//insert to the left if(current == NULL) {

parent->leftChild = tempNode; return;

}

}

//go to right of the tree else {

Step 7: Stop

161

current = current->rightChild;

//insert to the right if(current == NULL) {

parent->rightChild = tempNode; return;

}

}

}

}

162

Step 1: Start

Step 2:If root.data is equal to search.data

return root

Step 3:else

while data not found

Step 3.1:If data is greater than node.data

goto right subtree

Step 3.2:else

goto left subtree

Step 4:If data found

return node

endwhile

Step 5:return data not found

end if

Step 6: Stop

Search Operation

Whenever an element is to be searched, start searching from the root node, then if the

data is less than the key value, search for the element in the left subtree. Otherwise,

search for the element in the right subtree. Follow the same algorithm for each node.

Algorithm

Program

163

struct node* search(int data) {

struct node *current = root;

printf("Visiting elements: ");

while(current->data != data) {

if(current != NULL)

164

Tree Traversals

Traversal is a process to visit all the nodes of a tree and may print their values too.

Because, all nodes are connected via edges (links) we always start from the root

(head) node. That is, we cannot randomly access a node in a tree. There are three

ways which we use to traverse a tree −

 In-order Traversal

 Pre-order Traversal

 Post-order Traversal

printf("%d ",current->data);

//go to left tree

if(current->data > data) {

current = current->leftChild;

}

//else go to right tree

else {

current = current->rightChild;

}

//not found

if(current == NULL) {

return NULL;

}

return current;

}

}

165

In-order Traversal

In this traversal method, the left subtree is visited first, then the root and later the right

sub-tree. We should always remember that every node may represent a subtree itself.

If a binary tree is traversed in-order, the output will produce sorted key values in an

ascending order.

We start from A, and following in-order traversal, we move to its left subtree B. B is also

traversed in-order. The process goes on until all the nodes are visited. The output of

inorder traversal of this tree will be −

D → B → E → A → F → C → G

Algorithm:

Step 1: Start

Step 2: Until all nodes are traversed Step 3:

Recursively traverse left subtree.

166

void inorder_traversal(struct node* root) {

if(root != NULL) {

inorder_traversal(root->leftChild);

printf("%d ",root->data);

inorder_traversal(root->rightChild);

}

}

Step 4: Visit root node.

Step 5: Recursively traverse right subtree. Step 6:

Stop

Program:

Pre-order Traversal

167

In this traversal method, the root node is visited first, then the left subtree and finally the

right subtree.

We start from A, and following pre-order traversal, we first visit A itself and then move

to its left subtree B. B is also traversed pre-order. The process goes on until all the

nodes are visited. The output of pre-order traversal of this tree will be −

A → B → D → E → C → F → G

Algorithm:

Step 1: Start

Step 2: Until all nodes are traversed Step 3:

Visit root node.

Step 4: Recursively traverse left subtree. Step 5:

Recursively traverse right subtree. Step 6:

Stop

168

void pre_order_traversal(struct node* root) {

if(root != NULL) {

printf("%d ",root->data);

pre_order_traversal(root->leftChild);

pre_order_traversal(root->rightChild);

}

}

Program:

Post-order Traversal

In this traversal method, the root node is visited last, hence the name. First we traverse

the left subtree, then the right subtree and finally the root node.

We start from A, and following Post-order traversal, we first visit the left subtree B. B

is also traversed post-order. The process goes on until all the nodes are visited. The

output of post-order traversal of this tree will be −

D → E → B → F → G → C → A

169

void post_order_traversal(struct node* root) {

if(root != NULL) {

post_order_traversal(root->leftChild);

post_order_traversal(root->rightChild);

printf("%d ", root->data);

}

}

Algorithm

Step 1: Start

Step 2: Until all nodes are traversed Step 3:

Recursively traverse left subtree.

Step 4: Recursively traverse right subtree. Step 5:

Visit root node.

Step 6: Stop

Program:

170

GRAPH:

 A graph can be defined as group of vertices and edges that are used to connect these

vertices. A graph can be seen as a cyclic tree, where the vertices (Nodes) maintain any

complex relationship among them instead of having parent child relationship.

 Mathematical graphs can be represented in data structure. We can represent a graph

using an array of vertices and a two-dimensional array of edges.

Directed and Undirected Graph

 A graph can be directed or undirected. However, in an undirected graph, edges are not

associated with the directions with them. An undirected graph is shown in the below

figure since its edges are not attached with any of the directions. If an edge exists

between vertex A and B then the vertices can be traversed from B to A as well as A to

B.

 In a directed graph, edges form an ordered pair. Edges represent a specific path from

some vertex A to another vertex B. Node A is called initial node

171

while node B is called terminal node. A directed graph is shown in the following

figure.

 Before we proceed further, let's familiarize ourselves with some important terms −

 Vertex − Each node of the graph is represented as a vertex.

 Edge − Edge represents a path between two vertices or a line between two vertices.

 Adjacency − Two node or vertices are adjacent if they are connected to each other

through an edge.

 Path − Path represents a sequence of edges between the two vertices.

 Closed Path - A path will be called as closed path if the initial node is same as

terminal node. A path will be closed path if V0=VN.

 Simple Path - If all the nodes of the graph are distinct with an exception

V0=VN, then such path P is called as closed simple path.

 Cycle - A cycle can be defined as the path which has no repeated edges or vertices

except the first and last vertices.

172

 Connected Graph - A connected graph is the one in which some path exists between

every two vertices (u, v) in V. There are no isolated nodes in connected graph.

 Weighted Graph - In a weighted graph, each edge is assigned with some data such

as length or weight. The weight of an edge e can be given as w(e) which must be a

positive (+) value indicating the cost of traversing the edge.

 Degree of the Node - A degree of a node is the number of edges that are connected

with that node. A node with degree 0 is called as isolated node.

Application of Graph in Data Structure

Graphs data structure have a variety of applications. Some of the most popular

applications are:

 Helps to define the flow of computation of software programs.

 Used in Google maps for building transportation systems. In google maps, the

intersection of two or more roads represents the node while the road connecting two

nodes represents an edge. Google maps algorithm uses graphs to calculate the shortest

distance between two vertices.

 Used in social networks such as Facebook and Linkedin.

 Operating Systems use Resource Allocation Graph where every process and resource

acts as a node while edges are drawn from resources to the allocated process.

 Used in the world wide web where the web pages represent the nodes.

https://www.naukri.com/learning/what-is-operating-system-st617

173

 Blockchains also use graphs. The nodes are blocks that store many transactions

while the edges connect subsequent blocks.

 Used in modeling data.

Breadth First Search in Data Structure

Traversal means to visit each node of a graph. For graphs, there are two types of

traversals: Depth First traversal and Breadth-First traversal. In this article, we are

going to study Breadth-first traversal or BFS in detail.

What is Breadth First Search?

Breadth First Search is a traversal technique in which we traverse all the nodes of the

graph in a breadth-wise motion. In BFS, we traverse one level at a time and then jump

to the next level.

In a graph, the traversal can start from any node and cover all the nodes level-wise. The

BFS algorithm makes use of the queue data structure for implementation. In BFS, we

always reach the final goal state (which was not always the case for DFS).

Algorithm for BFS:

Step 1: Choose any one node randomly, to start traversing. Step 2:

Visit its adjacent unvisited node.

Step 3: Mark it as visited in the boolean array and display it. Step 4:

Insert the visited node into the queue.

Step 5: If there is no adjacent node, remove the first node from the queue. Step 6:

Repeat the above steps until the queue is empty.

https://www.naukri.com/learning/what-is-blockchain-st561

174

Working of Breadth First Search:

Consider the following graph having 8 nodes named as A, B, C, D, E, F, G and H as shown:

Initially, the queue will be empty.

Let us start traversing the graph from node A. Once we visit node A, we mark it as visited

and also place it inside the queue as shown:

175

The next step is to traverse its adjacent nodes i.e. B and C and place them inside the queue.

When we place the adjacent node of A in the queue, we will remove A from the queue

and display it in the output array as shown:

176

Next, we don’t have any more adjacent nodes for A. therefore, we will remove node B

from the queue and place its adjacent nodes into the queue. Similarly, we will traverse

the nodes of C and put them into the queue

The next adjacent node is node H. thus, we will traverse that as well and place it in the

queue. Once all the nodes have entered the queue, we will start removing them from

the queue and putting them into the output array.

177

Thus, slowly the queue starts decreasing in size and the output array will be full as shown:

178

Complexity of BFS

Time complexity: Since we are visiting all the nodes exactly once, therefore, the time

complexity is O(V+E). Here, O(E) may vary between O(1) and O(V2). Thus, in the

worst case, the time complexity of BFS is O(V2).

Space complexity: The space complexity of the BFS algorithm is O(V) where V denotes

vertices/nodes of the graph.

Applications of Breadth First Search

 To find the shortest path between two edges when the path length is equivalent to the

number of edges.

 To check whether a graph is bipartite or not

 To copy garbage collection by Cheney’s algorithm

 Used in unweighted graphs to find the minimum cost spanning tree

 To form peer-to-peer network connections

 To find neighboring locations in the GPS navigation system

 To detect cycle in an undirected graph

 To broadcast packets in a network

 To find all the nodes within one connected component in an otherwise

disconnected graph

179

Depth First Search in Data Structure

Depth First Search is a traversal technique in which we follow a depth-wise motion to

traverse all the nodes. This technique is based on backtracking.

What is DFS:

Depth first search is a recursive technique to traverse all the nodes of a graph. It makes

use of the stack data structure for traversing and remembering the nodes.

DFS follows the backtracking approach i.e. whenever there are no more nodes in the current

path, it goes back to the initial node and starts traversing the next available path.

While using the stack, we first choose the initial node and push all its adjacent nodes into

the stack. To visit a node, we pop a node from the stack and push all its adjacent nodes

to the stack.

This goes on until all the nodes are popped out i.e. the stack is empty. In the whole

process, we need to make sure that we don’t visit the same node more than once,

especially if the cycle exists. The output of DFS is always in the form of a spanning

tree.

Algorithm:

Step 1: Algorithm DFS(vertex v) Step 2:

visited[v] = 1

Step 3: for all nodes ‘w’ adjacent to v:

if(visited[w] == 0):

DFS(w)

180

Step 4: End for loop Step 5:

End DFS

Working of DFS:

Before looking at the working of the algorithm, let us first understand the following terms:

 Visit: It means we reached the node or we are reaching the node.

 Explore: It means processing every child of the node.

 Discovery: This term is used when we visit a node for the first time.

In DFS, we can take any node as the initial node and start traversing its adjacent nodes.

Let us see the working of DFS with the help of the following example:

Let’s start with node A. once we reach the child of A, we start exploring the grandchild of

A i.e. the child of B and so on. In this manner, we will traverse the whole graph.

181

We go from A to B to D to H. when we reach H, we have 3 choices: E, F, G. We can choose

to go with any of them. Let us go with F. from F, we got to C as C is the only unvisited

node of F.

Similarly, from C we will visit G. Now G does not have any unvisited node. Therefore, G

is the dead node and we will backtrack from here.

Thus, the spanning tree formed by following this path will be:

182

The push and pop operations in the stack will be:

Thus, the path followed is A→B→D→H→F→C→G→E. We need to note that there could

multiple paths for the same graph depending upon which node is traversed first.

Complexity Analysis for DFS:

Time complexity: We need to traverse the whole graph while implementing DFS.

therefore, its time complexity is O(V + E).

Space complexity: The algorithm makes use of an extra array. Therefore, in the worst

case, the space complexity is O(V).

183

Applications of DFS:

 Finding the number of connected components in a disconnected graph

 Detecting a cycle in a graph

 Finding all the articulation points in a graph

 Finding whether a graph is biconnected or not

 For finding strongly connected components in a graph

 To find bridges in a graph

 For topological sorting

 To solve puzzles with only one solution (Eg- mazes)

184

Module 5 Sorting and Hashing

 Sorting Techniques – Selection Sort, Insertion Sort, Quick Sort, Merge Sort and Heap Sort Hashing-

Hashing Techniques, Collision Resolution, Overflow handling, Hashing functions – Mid square,

Division, Folding, Digit Analysis

SORTING TECHNIQUES:

• Sorting refers to the operation or technique of arranging and rearranging sets of data

in some specific order. A collection of records called a list where every record has one

or more fields.

• Sorting is the operation performed to arrange the records of a table or list in some

order according to some specific ordering criterion. Sorting is performed according to

some key value of each record.

Complexity of Sorting Algorithm

• The complexity of sorting algorithm calculates the running time of a function in which

'n' number of items are to be sorted. The choice for which sorting method is suitable

for a problem depends on several dependency configurations for different problems.

The most noteworthy of these considerations are:

• The length of time spent by the programmer in programming a specific sorting

program

• Amount of machine time necessary for running the program

• The amount of memory necessary for running the program

• Various sorting techniques are analyzed in various cases and named these cases as

185

follows:

• Best case

• Worst case

186

• Average case

SELECTION SORT

• Selection sort is a simple sorting algorithm.

• This sorting algorithm is an in-place comparison-based algorithm in which the list is

divided into two parts, the sorted part at the left end and the unsorted part at the right

end.

• Initially, the sorted part is empty and the unsorted part is the entire list.

• The smallest element is selected from the unsorted array and swapped with the

leftmost element, and that element becomes a part of the sorted array.

• This process continues moving unsorted array boundary by one element to the right.

• This algorithm is not suitable for large data sets as its average and worst case

complexities are of Ο(n2), where n is the number of items.

• Consider the following

 For the first position in the sorted list, the whole list is scanned sequentially. The first

position where 14 is stored presently, we search the whole list and find that 10 is the

lowest value.

187

 So we replace 14 with 10. After one iteration 10, which happens to be the

minimum value in the list, appears in the first position of the sorted list.

 For the second position, where 33 is residing, we start scanning the rest of the list in a

linear manner.

 We find that 14 is the second lowest value in the list and it should appear at the

second place. We swap these values.

 After two iterations, two least values are positioned at the beginning in a sorted

manner.

188

The scenario will perform as follows:

189

Program for selection sort

#include <stdio.h> int

main()

{

int arr[10]={6,12,0,18,11,99,55,45,34,2};

int n=10;

int i, j, position, temp; for (i = 0; i < (n

- 1); i++)

{

position = i;

for (j = i + 1; j < n; j++)

{

if (arr[position] > arr[j]) position = j;

}

if (position != i)

{

temp = arr[i];

arr[i] = arr[position]; arr[position] = temp;

}

}

for (i = 0; i < n; i++)

190

printf("%d\t", arr[i]); return 0;

}

Time Complexity

Case Time Complexity

Best Case O(n2)

Average Case O(n2)

Worst Case O(n2)

o Best Case Complexity - It occurs when there is no sorting required, i.e. the array is

already sorted. The best-case time complexity of selection sort is O(n2).

o Average Case Complexity - It occurs when the array elements are in jumbled order

that is not properly ascending and not properly descending. The average case time

complexity of selection sort is O(n2).

o Worst Case Complexity - It occurs when the array elements are required to be

sorted in reverse order. That means suppose you have to sort the array elements in

ascending order, but its elements are in descending order. The worst-case time

complexity of selection sort is O(n2).

191

INSERTION SORT

• Insertion sort works similar to the sorting of playing cards in hands.

• It is assumed that the first card is already sorted in the card game, and then we select

an unsorted card.

• If the selected unsorted card is greater than the first card, it will be placed at the right

side; otherwise, it will be placed at the left side.

• Similarly, all unsorted cards are taken and put in their exact place.

• The same approach is applied in insertion sort.

• The idea behind the insertion sort is that first take one element, iterate it through the

sorted array.

• Although it is simple to use, it is not appropriate for large data sets as the time

complexity of insertion sort in the average case and worst case is O(n2), where n is the

number of items.

• Insertion sort is less efficient than the other sorting algorithms like heap sort, quick

sort, merge sort, etc.

• Insertion sort has various advantages such as –

• Simple implementation

• Efficient for small data sets

• Adaptive, i.e., it is appropriate for data sets that are already substantially sorted.

192

Working of Insertion sort Algorithm

Let the elements of array are –

Initially, the first two elements are compared in insertion sort.

Here, 31 is greater than 12. That means both elements are already in ascending order.

So, for now, 12 is stored in a sorted sub-array.

Now, move to the next two elements and compare them.

Here, 25 is smaller than 31. So, 31 is not at correct position. Now, swap 31 with

25. Along with swapping, insertion sort will also check it with all elements in the sorted

array.

193

For now, the sorted array has only one element, i.e. 12. So, 25 is greater than 12. Hence,

the sorted array remains sorted after swapping.

Now, two elements in the sorted array are 12 and 25. Move forward to the next elements

that are 31 and 8.

Both 31 and 8 are not sorted. So, swap them.

After swapping, elements 25 and 8 are unsorted.

194

So, swap them.

Now, elements 12 and 8 are unsorted.

So, swap them too.

Now, the sorted array has three items that are 8, 12 and 25. Move to the next items that are

31 and 32.

Hence, they are already sorted. Now, the sorted array includes 8, 12, 25 and 31.

195

Move to the next elements that are 32 and 17

196

17 is smaller than 32. So, swap them.

Swapping makes 31 and 17 unsorted. So, swap them too.

Now, swapping makes 25 and 17 unsorted. So, perform swapping again.

Now, the array is completely sorted.

Algorithm

197

The simple steps of achieving the insertion sort are listed as follows -

Step 1 - If the element is the first element, assume that it is already sorted. Return 1.

Step2 - Pick the next element, and store it separately in a key. Step3 - Now,

compare the key with all elements in the sorted array.

Step 4 - If the element in the sorted array is smaller than the current element, then move to

the next element. Else, shift greater elements in the array towards the right.

Step 5 - Insert the value.

Step 6 - Repeat until the array is sorted.

Program #include<stdio.h> int

main()

{

/* Here i & j for loop counters, temp for swapping, count for

total number of elements, number[] to

* store the input numbers in array. You can increase

* or decrease the size of number array as per requirement

*/

int i, j, count, temp, number[25];

printf("How many numbers u are going to enter?: ");

198

scanf("%d",&count);

printf("Enter %d elements: ", count);

// This loop would store the input numbers in array

for(i=0;i<count;i++) scanf("%d",&number[i]);

// Implementation of insertion sort algorithm for(i=1;i<count;i++)

{

temp=number[i]; j=i-1;

while((temp<number[j])&&(j>=0))

{

number[j+1]=number[j]; j=j-1;

}

number[j+1]=temp;

}

printf("Order of Sorted elements: ");

for(i=0;i<count;i++)

printf(" %d",number[i]); return 0;

}

199

Time Complexity

Case Time Complexity

Best Case O(n)

Average Case O(n2)

Worst Case O(n2)

o Best Case Complexity - It occurs when there is no sorting required, i.e. the array is

already sorted. The best-case time complexity of insertion sort is O(n).

o Average Case Complexity - It occurs when the array elements are in jumbled order

that is not properly ascending and not properly descending. The average case time

complexity of insertion sort is O(n2).

o Worst Case Complexity - It occurs when the array elements are required to be

sorted in reverse order. That means suppose you have to sort the array elements in

ascending order, but its elements are in descending order. The worst-case time

complexity of insertion sort is O(n2).

QUICK SORT

• Quicksort is the widely used sorting algorithm that makes n log n comparisons in

average case for sorting an array of n elements.

• It is a faster and highly efficient sorting algorithm.

• This algorithm follows the divide and conquer approach.

• Divide and conquer is a technique of breaking down the algorithms into

subproblems, then solving the subproblems, and combining the results back together

to solve the original problem.

200

• Divide: In Divide, first pick a pivot element. After that, partition or rearrange the

array into two sub-arrays such that each element in the left sub-array is less than or

equal to the pivot element and each element in the right sub-array is larger than the

pivot element.

• Conquer: Recursively, sort two subarrays with Quicksort

• Quicksort picks an element as pivot, and then it partitions the given array around the

picked pivot element.

• In quick sort, a large array is divided into two arrays in which one holds values that are

smaller than the specified value (Pivot), and another array holds the values that are

greater than the pivot.

• After that, left and right sub-arrays are also partitioned using the same approach. It

will continue until the single element remains in the sub-array.

Choosing the pivot

• Picking a good pivot is necessary for the fast implementation of quicksort. However,

it is typical to determine a good pivot. Some of the ways of choosing a pivot are as

follows -

• Pivot can be random, i.e. select the random pivot from the given array.

• Pivot can either be the rightmost element of the leftmost element of the given array.

201

• Select median as the pivot element.

Algorithm

Step 1: Start

Step 2: Consider first element as a pivot element Step 3:

Initialize ‘i’ to low index, ‘j’ to high index Step 4: Repeat

the following steps until i<j

Step 4.1: Keep on incrementing ‘i‘while a[i] <=pivot Step 4.2: Keep on

decrementing ‘j’ while a[j]>pivot Step 4.3: if i<j then swap (a[i],

a[j])

Step 5: If i>j then swap (a[j], pivot), j is the position of pivot Step 6: Stop

Program

#include<stdio.h>

void quicksort(int number[25],int first,int last)

{

int i, j, pivot, temp;

if(first<last)

{

pivot=first; i=first;

j=last;

while(i<j)

202

{

while(number[i]<=number[pivot]&&i<last) i++;

while(number[j]>number[pivot]) j--;

if(i<j)

{

temp=number[i]; number[i]=number[j];

number[j]=temp;

}

}

temp=number[pivot];

number[pivot]=number[j];

number[j]=temp;

quicksort(number,first,j-1);

quicksort(number,j+1,last);

}

}

int main()

{

int i, count, number[25];

printf("How many elements are u going to enter?: ");

203

scanf("%d",&count);

printf("Enter %d elements: ", count);

for(i=0;i<count;i++)

scanf("%d",&number[i]);

quicksort(number,0,count-1);

printf("Order of Sorted elements: ");

for(i=0;i<count;i++)

printf(" %d",number[i]); return

0; }

Time Complexity

Case Time Complexity

Best Case O(n*logn)

Average Case O(n*logn)

Worst Case O(n2)

o Best Case Complexity - In Quicksort, the best-case occurs when the pivot element

is the middle element or near to the middle element. The best-case time complexity of

quicksort is O(n*logn).

204

o Average Case Complexity - It occurs when the array elements are in jumbled order

that is not properly ascending and not properly descending. The average case time

complexity of quicksort is O(n*logn).

o Worst Case Complexity - In quick sort, worst case occurs when the pivot element is

either greatest or smallest element. Suppose, if the pivot element is always the last

element of the array, the worst case would occur when the given array is sorted already

in ascending or descending order. The worst-case time complexity of quicksort is

O(n2).

MERGE SORT

 Merge sort is similar to the quick sort algorithm as it uses the divide and conquer

approach to sort the elements.

 It is one of the most popular and efficient sorting algorithm. It divides the given list

into two equal halves, calls itself for the two halves and then merges the two sorted

halves.

 We have to define the merge() function to perform the merging.

 The sub-lists are divided again and again into halves until the list cannot be divided

further.

 Then we combine the pair of one element lists into two-element lists, sorting them in

the process.

205

 The sorted two-element pairs is merged into the four-element lists, and so on until we

get the sorted list.

Working of Merge Sort

To understand the working of the merge sort algorithm, let's take an unsorted array. It will

be easier to understand the merge sort via an example.

Let the elements of array are -

According to the merge sort, first divide the given array into two equal halves. Merge sort

keeps dividing the list into equal parts until it cannot be further divided.

As there are eight elements in the given array, so it is divided into two arrays of size 4.

Now, again divide these two arrays into halves. As they are of size 4, so divide them into new

arrays of size 2.

206

Now, again divide these arrays to get the atomic value that cannot be further divided.

Now, combine them in the same manner they were broken

In combining, first compare the element of each array and then combine them into

another array in sorted order.

So, first compare 12 and 31, both are in sorted positions. Then compare 25 and 8, and in

the list of two values, put 8 first followed by 25. Then compare 32 and 17, sort them

and put 17 first followed by 32. After that, compare 40 and 42, and place them

sequentially.

In the next iteration of combining, now compare the arrays with two data values and merge

them into an array of found values in sorted order.

207

208

Now, there is a final merging of the arrays. After the final merging of above arrays, the

array will look like -

Now, the array is completely sorted.

Program

mergesort(arr[], l, r)

{

if(l<r)

{

}

}

m=(l+r)/2;

mergesort(arr,l,

m);

mergesort(arr,

m+1,r);

merge(arr,l,m,r

);

merge(arr,l,m,r)

{

int i=l,j=m+1,k=1; int temp[];

while(i<=m&&j<=r)

{

if(arr[i]<=arr[j])

{

209

}

else

{

}

}

temp[k]=arr[i]

; i++;

k++;

temp[k]=arr[j]

; j++;

k++;

while(i<=m)

{

temp[k]=arr[i]; i++;

k++;

}

while(j<=r)

{

temp[k]=arr[j]; j++;

k++;

}

for(int p=l;p<=r;p++)

{

arr[p]=temp[p];

}

}

#include<stdio.h> int

main()

{

int arr[],l,r,n,i;

printf(“Enter the number of elements:”);

scanf(“%d”,&n);

210

printf(“Enter the elements:”)

for(i=0;i<n;i++)

{

scanf(“%d”,&arr[i]);

} l=0;

r=n-1;

mergesort(arr[],l,r);

}

Time Complexity

Case Time Complexity

Best Case O(n*logn)

Average Case O(n*logn)

Worst Case O(n*logn)

o Best Case Complexity - It occurs when there is no sorting required, i.e. the array is

already sorted. The best-case time complexity of merge sort is O(n*logn).

o Average Case Complexity - It occurs when the array elements are in jumbled order

that is not properly ascending and not properly descending. The average case time

complexity of merge sort is O(n*logn).

o Worst Case Complexity - It occurs when the array elements are required to be

sorted in reverse order. That means suppose you have to sort the array

211

elements in ascending order, but its elements are in descending order. The worst-case

time complexity of merge sort is O(n*logn).

HEAP SORT

 Heap sort processes the elements by creating the min-heap or max-heap using the

elements of the given array. Min-heap or max-heap represents the ordering of array in

which the root element represents the minimum or maximum element of the array.

 Heap sort basically recursively performs two main operations -

o Build a heap H, using the elements of array.

o Repeatedly delete the root element of the heap formed in 1st phase.

 A heap is a complete binary tree, and the binary tree is a tree in which the node can

have the utmost two children. A complete binary tree is a binary tree in which all the

levels except the last level, i.e., leaf node, should be completely filled, and all the

nodes should be left-justified.

 There are two variants of a heap: max-heap and min-heap. The heap properties

change a bit with each variant.

 According to the heap property, the key or value of each node in a heap is

always greater than its children nodes, and the key or value of the root node is

always the largest in the heap tree.

212

 The heap property for min-heap states that the value or key of each child node is

always greater than its parent node, and the value of the root node is always the

smallest in the heap.

Working of Heap sort Algorithm

In heap sort, basically, there are two phases involved in the sorting of elements. By using the

heap sort algorithm, they are as follows -

o The first step includes the creation of a heap by adjusting the elements of the array.

o After the creation of heap, now remove the root element of the heap repeatedly by

shifting it to the end of the array, and then store the heap structure with the remaining

elements.

Let’s take an example:

First, we have to construct a heap from the given array and convert it into max heap.

213

After converting the given heap into max heap, the array elements are -

Next, we have to delete the root element (89) from the max heap. To delete this node, we

have to swap it with the last node, i.e. (11). After deleting the root element, we again

have to heapify it to convert it into max heap.

After swapping the array element 89 with 11, and converting the heap into max- heap, the

elements of array are -

In the next step, again, we have to delete the root element (81) from the max heap. To

delete this node, we have to swap it with the last node, i.e. (54). After deleting the root

element, we again have to heapify it to convert it into max heap.

214

After swapping the array element 81 with 54 and converting the heap into max-heap, the

elements of array are –

In the next step, we have to delete the root element (76) from the max heap again. To

delete this node, we have to swap it with the last node, i.e. (9). After deleting the root

element, we again have to heapify it to convert it into max heap.

215

After swapping the array element 76 with 9 and converting the heap into max-heap, the

elements of array are –

In the next step, again we have to delete the root element (54) from the max heap. To

delete this node, we have to swap it with the last node, i.e. (14). After deleting the root

element, we again have to heapify it to convert it into max heap.

After swapping the array element 54 with 14 and converting the heap into max-heap, the

elements of array are –

In the next step, again we have to delete the root element (22) from the max heap. To

delete this node, we have to swap it with the last node, i.e. (11). After deleting the root

element, we again have to heapify it to convert it into max heap.

216

After swapping the array element 22 with 11 and converting the heap into max-heap, the

elements of array are -

In the next step, again we have to delete the root element (14) from the max heap. To

delete this node, we have to swap it with the last node, i.e. (9). After deleting the root

element, we again have to heapify it to convert it into max heap.

After swapping the array element 14 with 9 and converting the heap into max-heap, the

elements of array are –

217

In the next step, again we have to delete the root element (11) from the max heap. To

delete this node, we have to swap it with the last node, i.e. (9). After deleting the root

element, we again have to heapify it to convert it into max heap.

After swapping the array element 11 with 9, the elements of array are –

Now, heap has only one element left. After deleting it, heap will be empty.

After completion of sorting, the array elements are -

218

Now, the array is completely sorted.

219

Algorithm

Step 1 - Start

Step 2 - Construct a Binary Tree with given list of Elements. Step 3 -

Transform the Binary Tree into Max Heap.

Step 4 - Delete the root element from Max Heap using Heapify method. Step 5 -

Put the deleted element into the Sorted list.

Step 6 - Repeat the same until Max Heap becomes empty. Step 7 -

Display the sorted list

Step 8 – Stop

Time Complexity

Case Time Complexity

Best Case O(n logn)

Average Case O(n log n)

Worst Case O(n log n)

o Best Case Complexity - It occurs when there is no sorting required, i.e. the array is

already sorted. The best-case time complexity of heap sort is O(n logn).

220

o Average Case Complexity - It occurs when the array elements are in jumbled order

that is not properly ascending and not properly descending. The average case time

complexity of heap sort is O(n log n).

o Worst Case Complexity - It occurs when the array elements are required to be

sorted in reverse order. That means suppose you have to sort the array elements in

ascending order, but its elements are in descending order. The worst-case time

complexity of heap sort is O(n log n).

Program

#include <stdio.h>

/* function to heapify a subtree. Here 'i' is the

index of root node in array a[], and 'n' is the size of heap. */

void heapify(int a[], int n, int i)

{

int largest = i; // Initialize largest as root int

left = 2 * i + 1; // left child

int right = 2 * i + 2; // right child

// If left child is larger than root

if (left < n && a[left] > a[largest])

largest = left;

// If right child is larger than root

if (right < n && a[right] > a[largest])

largest = right;

// If root is not largest if

(largest != i) {

// swap a[i] with a[largest] int

temp = a[i];

221

a[i] = a[largest];

a[largest] = temp;

222

heapify(a, n, largest);

}

}

/*Function to implement the heap sort*/

void heapSort(int a[], int n)

{

for (int i = n / 2 - 1; i >= 0; i--)

heapify(a, n, i);

// One by one extract an element from heap for

(int i = n - 1; i >= 0; i--) {

/* Move current root element to end*/

// swap a[0] with a[i] int

temp = a[0];

a[0] = a[i]; a[i] =

temp;

heapify(a, i, 0);

}

}

/* function to print the array elements */

void printArr(int arr[], int n)

{

for (int i = 0; i < n; ++i)

{

printf("%d", arr[i]);

printf(" ");

}

223

}

int main()

{

int a[] = {48, 10, 23, 43, 28, 26, 1};

int n = sizeof(a) / sizeof(a[0]);

printf("Before sorting array elements are - \n");

224

printArr(a, n);

heapSort(a, n);

printf("\nAfter sorting array elements are - \n");

printArr(a, n);

return 0;

}

HASHING

 Hashing is an important data structure designed to solve the problem of efficiently

finding and storing data in an array.

 For example, if you have a list of 20000 numbers, and you have given a number to

search in that list- you will scan each number in the list until you find a match.

 It requires a significant amount of your time to search in the entire list and locate that

specific number.

 This manual process of scanning is not only time-consuming but inefficient too.

 With hashing in the data structure, you can narrow down the search and find the

number within seconds.

What is Hashing in Data Structure?

 Hashing in the data structure is a technique of mapping a large chunk of data into

small tables using a hashing function.

 It is also known as the message digest function. It is a technique that uniquely

identifies a specific item from a collection of similar items.

https://www.upgrad.com/blog/data-structure-project-ideas-beginners/
https://www.upgrad.com/blog/graphs-in-data-structure/

225

 It uses hash tables to store the data in an array format. Each value in the array has

assigned a unique index number.

 Hash tables use a technique to generate these unique index numbers for each value

stored in an array format. This technique is called the hash technique.

 You only need to find the index of the desired item, rather than finding the data.

 With indexing, you can quickly scan the entire list and retrieve the item you wish.

 Indexing also helps in inserting operations when you need to insert data at a specific

location. No matter how big or small the table is, you can update and retrieve data

within seconds.

 Hashing in a data structure is a two-step process.

o The hash function converts the item into a small integer or hash value. This integer is

used as an index to store the original data.

o It stores the data in a hash table. You can use a hash key to locate data quickly.

Hash Function

 The hash function in a data structure maps arbitrary size of data to fixed-sized data.

 It returns the following values: a small integer value (also known as hash

value), hash codes, and hash sums.

 The has function must satisfy the following requirements:

o A good hash function is easy to compute.

o A good hash function never gets stuck in clustering and distributes keys evenly

across the hash table.

226

o A good hash function avoids collision when two elements or items get assigned to

the same hash value.

Hash Table

 Hash table is one of the most important data structures that uses a special function

known as a hash function that maps a given value with a key to access the elements

faster.

 A Hash table is a data structure that stores some information, and the information has

basically two main components, i.e., key and value.

 The hash table can be implemented with the help of an associative array.

 The efficiency of mapping depends upon the efficiency of the hash function used for

mapping.

 Drawback of Hash function is that hash function assigns each value with a unique

key. Sometimes hash table uses an imperfect hash function that causes a collision

because the hash function generates the same key of two different values.

227

 There are three ways of calculating the hash function:

o Division method

o Folding method

o Mid square method

Collision

 When the two different values have the same value, then the problem occurs

between the two values, known as a collision.

 For example, if the key value is 6 and the size of the hash table is 10. When we apply

the hash function to key 6 then the index would be:

h(6) = 6%10 = 6

The index is 6 at which the value is stored.

 In the above example, the value is stored at index 6. If the key value is 26, then the

index would be:

h(26) = 26%10 = 6

 Therefore, two values are stored at the same index, i.e., 6, and this leads to the collision

problem. To resolve these collisions, we have some techniques known as collision

techniques.

 The following are the collision techniques:

o Open Hashing: It is also known as closed addressing.

o Closed Hashing: It is also known as open addressing.

228

Open Hashing

 In Open Hashing, one of the methods used to resolve the collision is known as a

chaining method.

 Let's first understand the chaining to resolve the collision.

Suppose we have a list of key values

A = 3, 2, 9, 6, 11, 13, 7, 12 where m = 10, and h(k) = 2k+3

In this case, we cannot directly use h(k) = ki/m as h(k) = 2k+3

 The index of key value 3 is: index =

h(3) = (2(3)+3)%10 = 9

The value 3 would be stored at the index 9.

 The index of key value 2 is:

229

index = h(2) = (2(2)+3)%10 = 7

The value 2 would be stored at the index 7.

 The index of key value 9 is: index =

h(9) = (2(9)+3)%10 = 1

The value 9 would be stored at the index 1.

 The index of key value 6 is: index =

h(6) = (2(6)+3)%10 = 5

The value 6 would be stored at the index 5.

 The index of key value 11 is: index =

h(11) = (2(11)+3)%10 = 5

The value 11 would be stored at the index 5. Now, we have two values (6, 11) stored at the

same index, i.e., 5. This leads to the collision problem, so we will use the chaining

method to avoid the collision. We will create one more list and add the value 11 to

this list. After the creation of the new list, the newly created list will be linked to the

list having value 6.

 The index of key value 13 is: index =

h(13) = (2(13)+3)%10 = 9

The value 13 would be stored at index 9. Now, we have two values (3, 13) stored at the

same index, i.e., 9. This leads to the collision problem, so we

230

will use the chaining method to avoid the collision. We will create one more list and add

the value 13 to this list. After the creation of the new list, the newly created list will be

linked to the list having value 3.

 The index of key value 7 is: index =

h(7) = (2(7)+3)%10 = 7

The value 7 would be stored at index 7. Now, we have two values (2, 7) stored at the

same index, i.e., 7. This leads to the collision problem, so we will use the chaining

method to avoid the collision. We will create one more list and add the value 7 to this

list. After the creation of the new list, the newly created list will be linked to the list

having value 2.

 The index of key value 12 is: index =

h(12) = (2(12)+3)%10 = 7

According to the above calculation, the value 12 must be stored at index 7, but the value 2

exists at index 7. So, we will create a new list and add 12 to the list. The newly created

list will be linked to the list having a value 7.

The calculated index value associated with each key value is shown in the below table:

key Location(u)

3 ((2*3)+3)%10 = 9

2 ((2*2)+3)%10 = 7

9 ((2*9)+3)%10 = 1

6 ((2*6)+3)%10 = 5

231

11 ((2*11)+3)%10 = 5

13 ((2*13)+3)%10 = 9

7 ((2*7)+3)%10 = 7

12 ((2*12)+3)%10 = 7

Closed Hashing

In Closed hashing, three techniques are used to resolve the collision:

1. Linear probing

2. Quadratic probing

3. Double Hashing technique

Linear Probing

 Linear probing is one of the forms of open addressing.

 As we know that each cell in the hash table contains a key-value pair, so when the

collision occurs by mapping a new key to the cell already occupied by another key,

then linear probing technique searches for the closest free locations and adds a new

key to that empty cell.

 In this case, searching is performed sequentially, starting from the position where the

collision occurs till the empty cell is not found.

 Let's understand the linear probing through an example.

Consider the above example for the linear probing:

232

A = 3, 2, 9, 6, 11, 13, 7, 12 where m = 10, and h(k) = 2k+3

 The key values 3, 2, 9, 6 are stored at the indexes 9, 7, 1, 5 respectively. The

calculated index value of 11 is 5 which is already occupied by another key value, i.e., 6.

When linear probing is applied, the nearest empty cell to the index 5 is 6; therefore, the

value 11 will be added at the index 6.

 The next key value is 13. The index value associated with this key value is 9 when

hash function is applied. The cell is already filled at index 9. When linear probing is

applied, the nearest empty cell to the index 9 is 0; therefore, the value 13 will be

added at the index 0.

 The next key value is 7. The index value associated with the key value is 7 when

hash function is applied. The cell is already filled at index 7. When linear probing is

applied, the nearest empty cell to the index 7 is 8; therefore, the value 7 will be added

at the index 8.

 The next key value is 12. The index value associated with the key value is 7 when

hash function is applied. The cell is already filled at index 7. When linear probing is

applied, the nearest empty cell to the index 7 is 2; therefore, the value 12 will be

added at the index 2.

 The final hash table would be:

0 13

1 9

2 12

3

4

5 6

233

6 11

7 2

8 7

9 3

Quadratic Probing

 In case of linear probing, searching is performed linearly.

 In contrast, quadratic probing is an open addressing technique that uses quadratic

polynomial for searching until a empty slot is found.

 It can also be defined as that it allows the insertion ki at first free location from

(u+i2)%m where i=0 to m-1.

Let's understand the quadratic probing through an example.

Consider the same example which we discussed in the linear probing.

A = 3, 2, 9, 6, 11, 13, 7, 12 where m = 10, and h(k) = 2k+3

o The key values 3, 2, 9, 6 are stored at the indexes 9, 7, 1, 5, respectively. We do not

need to apply the quadratic probing technique on these key values as there is no

occurrence of the collision.

o The index value of 11 is 5, but this location is already occupied by the 6. So, we

apply the quadratic probing technique.

When i = 0

Index= (5+02)%10 = 5

234

When i=1

Index = (5+12)%10 = 6

Since location 6 is empty, so the value 11 will be added at the index 6.

o The next element is 13. When the hash function is applied on 13, then the index

value comes out to be 9, which we already discussed in the chaining method. At index

9, the cell is occupied by another value, i.e., 3. So, we will apply the quadratic probing

technique to calculate the free location.

When i=0

Index = (9+02)%10 = 9

When i=1

Index = (9+12)%10 = 0

Since location 0 is empty, so the value 13 will be added at the index 0.

o The next element is 7. When the hash function is applied on 7, then the index value

comes out to be 7, which we already discussed in the chaining method. At index 7, the

cell is occupied by another value, i.e., 7. So, we will apply the quadratic probing

technique to calculate the free location.

When i=0

Index = (7+02)%10 = 7

When i=1

235

Index = (7+12)%10 = 8

Since location 8 is empty, so the value 7 will be added at the index 8.

o The next element is 12. When the hash function is applied on 12, then the index

value comes out to be 7. When we observe the hash table then we will get to know

that the cell at index 7 is already occupied by the value 2. So, we apply the Quadratic

probing technique on 12 to determine the free location.

When i=0

Index= (7+02)%10 = 7

When i=1

Index = (7+12)%10 = 8

When i=2

Index = (7+22)%10 = 1

When i=3

Index = (7+32)%10 = 6

When i=4

Index = (7+42)%10 = 3

Since the location 3 is empty, so the value 12 would be stored at the index 3.

 The final hash table would be:

236

Double Hashing

 Double hashing is an open addressing technique which is used to avoid the

collisions.

 When the collision occurs then this technique uses the secondary hash of the key.

 It uses one hash value as an index to move forward until the empty location is found.

 In double hashing, two hash functions are used.

 Suppose h1(k) is one of the hash functions used to calculate the locations whereas

h2(k) is another hash function.

 It can be defined as "insert ki at first free place from (u+v*i)%m where i=(0 to m-

1)".

 In this case, u is the location computed using the hash function and v is equal to

(h2(k)%m).

 Consider the same example that we use in quadratic probing.

237

A = 3, 2, 9, 6, 11, 13, 7, 12 where m = 10, and h1(k) =

2k+3

h2(k) = 3k+1

ke

y

Location (u) v

3 ((2*3)+3)%10 = 9 -

2 ((2*2)+3)%10 = 7 -

9 ((2*9)+3)%10 = 1 -

6 ((2*6)+3)%10 = 5 -

11 ((2*11)+3)%10 = 5 (3(11)+1)%10

=4

13 ((2*13)+3)%10 = 9 (3(13)+1)%10 =

0

7 ((2*7)+3)%10 = 7 (3(7)+1)%10 =

2

12 ((2*12)+3)%10 = 7 (3(12)+1)%10 =

7

o As we know that no collision would occur while inserting the keys (3, 2, 9, 6), so we

will not apply double hashing on these key values.

o On inserting the key 11 in a hash table, collision will occur because the calculated

index value of 11 is 5 which is already occupied by some another value. Therefore, we

will apply the double hashing technique on key 11. When the key value is 11, the value

of v is 4.

o Now, substituting the values of u and v in (u+v*i)%m

When i=0

Index = (5+4*0)%10 =5

238

When i=1

Index = (5+4*1)%10 = 9

239

When i=2

Index = (5+4*2)%10 = 3

o Since the location 3 is empty in a hash table; therefore, the key 11 is added at the

index 3.

o The next element is 13. The calculated index value of 13 is 9 which is already

occupied by some another key value. So, we will use double hashing technique to find

the free location. The value of v is 0.

o Now, substituting the values of u and v in (u+v*i)%m

When i=0

Index = (9+0*0)%10 = 9

o We will get 9 value in all the iterations from 0 to m-1 as the value of v is zero.

Therefore, we cannot insert 13 into a hash table.

o The next element is 7. The calculated index value of 7 is 7 which is already occupied

by some another key value. So, we will use double hashing technique to find the free

location. The value of v is 2.

o Now, substituting the values of u and v in (u+v*i)%m

When i=0

Index = (7 + 2*0)%10 = 7

When i=1

Index = (7+2*1)%10 = 9

When i=2

240

Index = (7+2*2)%10 = 1

When i=3

Index = (7+2*3)%10 = 3

When i=4

Index = (7+2*4)%10 = 5

When i=5

Index = (7+2*5)%10 = 7

When i=6

Index = (7+2*6)%10 = 9

When i=7

Index = (7+2*7)%10 = 1

When i=8

Index = (7+2*8)%10 = 3

When i=9

Index = (7+2*9)%10 = 5

o Since we checked all the cases of i (from 0 to 9), but we do not find suitable place to

insert 7. Therefore, key 7 cannot be inserted in a hash table.

241

o The next element is 12. The calculated index value of 12 is 7 which is already

occupied by some another key value. So, we will use double hashing technique to find

the free location. The value of v is 7.

o Now, substituting the values of u and v in (u+v*i)%m

When i=0

Index = (7+7*0)%10 = 7

When i=1

Index = (7+7*1)%10 = 4

o Since the location 4 is empty; therefore, the key 12 is inserted at the index 4.

 The final hash table would be:

242

Types of Hash functions

There are many hash functions that use numeric or alphanumeric keys. This article focuses

on discussing different hash functions:

1. Division Method.

2. Mid Square Method.

3. Folding Method.

4. Digit Analysis.

Let’s begin discussing these methods in detail.

1. Division Method:

This is the most simple and easiest method to generate a hash value. The hash function

divides the value k by M and then uses the remainder obtained.

Formula:

h(K) = k mod M

Here,

k is the key value, and

M is the size of the hash table.

It is best suited that M is a prime number as that can make sure the keys are more uniformly

distributed. The hash function is dependent upon the remainder of a division.

243

Example:

k = 12345

M = 95

h(12345) = 12345 mod 95

= 90

k = 1276

M = 11

h(1276) = 1276 mod 11

=

Pros:

1. This method is quite good for any value of M.

2. The division method is very fast since it requires only a single division

operation.

Cons:

1. This method leads to poor performance since consecutive keys map to

consecutive hash values in the hash table.

2. Sometimes extra care should be taken to chose value of M.

2. Mid Square Method:

The mid square method is a very good hashing method. It involves two steps to compute

the hash value-

1. Square the value of the key k i.e. k2

244

2. Extract the middle r digits as the hash value.

Formula:

h(K) = h(k x k)

Here,

k is the key value.

The value of r can be decided based on the size of the table.

Example:

Suppose the hash table has 100 memory locations. So r = 2 because two digits are required to

map the key to the memory location.

k = 60

k x k = 60 x 60

= 3600

h(60) = 60

The hash value obtained is 60

Pros:

1. The performance of this method is good as most or all digits of the key value

contribute to the result. This is because all digits in the key contribute to generating

the middle digits of the squared result.

2. The result is not dominated by the distribution of the top digit or bottom digit of

the original key value.

245

Cons:

1. The size of the key is one of the limitations of this method, as the key is of big size

then its square will double the number of digits.

2. Another disadvantage is that there will be collisions but we can try to reduce

collisions.

3. Digit Folding Method:

This method involves two steps:

1. Divide the key-value k into a number of parts i.e. k1, k2, k3,….,kn, where each part

has the same number of digits except for the last part that can have lesser digits than

the other parts.

2. Add the individual parts. The hash value is obtained by ignoring the last carry if

any.

Formula:

k = k1, k2, k3, k4, ….., kn

s = k1+ k2 + k3 + k4 +….+ kn h(K)=

s

Here,

s is obtained by adding the parts of the key k

Example:

k = 12345

k1 = 12, k2 = 34, k3 = 5

246

s = k1 + k2 + k3

= 12 + 34 + 5

= 51

h(K) = 51

Note:

The number of digits in each part varies depending upon the size of the hash table. Suppose

for example the size of the hash table is 100, then each part must have two digits except

for the last part that can have a lesser number of digits.

4. Digit Analysis:

 The last method we will examine, digit analysis, is used with static files. A static file

is one in which all the identifiers are known in advance.

 Using this method, we first transform the identifiers into numbers using some radix, r.

 We then examine the digits of each identifier, deleting those digits that have the most

skewed distributions. We continue deleting digits until the number of remaining digits

is small enough to give an address in the range of the hash table.

 The digits used to calculate the hash address must be the same for all identifiers and

must not have abnormally high peaks or valleys (the standard deviation must be

small).

 In general, a hash function is one that accepts an input of arbitrary length and

distribution and transforms it (typically via a technique that non-recoverably discards

information) into an output that is of fixed size and evenly distributed.

247

 So (for example), if our inputs were 1938m, 3391i, 3091b,

4903a, 4930a, 6573b, and 4891c, we analyze the digits: there

are three 1s, six 9s, seven 3s, two 8s, one m, one i, three 0s,

two bs, three 4s, two as, one 6, one 5, one 7, and one c.

 So we might decide to eliminate 1, 8, m, i, 0, b, 4, a, 6, 5, 7

and c from the inputs to produce 93, 339, 39, 93, 93, 3, 9.

 Let’s further say we only want a one-character hash, so we

take only the first character: 9, 3, 3, 9, 9, 3, 9. We now have a

hash function that hashes these seven identifiers more-or-less

evenly into one of two buckets.

OVERFLOW CONDITION IN HASHING

• An overflow occurs at the time of the home bucket for a new pair (key,

element) is full. There are two methods for detecting collisions and

overflows in a static hash table; each method using different data

structure to represent the hash table.

Two Methods:

Linear Open Addressing (Linear probing) Chaining

• Open addressing is performed to ensure that all elements are stored

directly into the hash table, thus it attempts to resolve collisions

implementing various methods.

• Linear Probing is performed to resolve collisions by placing the data into

the next open slot in the table.

248

CONTENT BEYOND SYLLABUS

AVL Trees

Tree is one of the most important data structure that is used for efficiently

performing operations like insertion, deletion and searching of values.

However, while working with a large volume of data, construction of a

well-balanced tree for sorting all d

is stored as a tree, and the actual volume of data being used continually

changes through the insertion of new data and deletion of existing data.

You will find in some cases where the NULL link to a binary tree

links is called as threads and hence it is possible to perform traversals,

insertions, deletions without using either stack or recursion. In this

chapter, you will learn about the Height balance tree which is also known

as the AVL tree.

What is AVL Tree:

AVL tree is a binary search tree in which the difference of heights of left

and right subtrees of any node is less than or equal to one. The technique

of balancing the height of binary trees was developed by

and Landis and henc

Binary Tree.

What if the input to binary search tree comes in a sorted (ascending or

descending) manner? It will then look like this

II Semester :: Data Structures :: AVL Trees ::

AVL Trees

Height Balanced Trees

Tree is one of the most important data structure that is used for efficiently

performing operations like insertion, deletion and searching of values.

However, while working with a large volume of data, construction of a

balanced tree for sorting all data is not feasible. Thus only useful data

is stored as a tree, and the actual volume of data being used continually

249

changes through the insertion of new data and deletion of existing data.

You will find in some cases where the NULL link to a binary tree

links is called as threads and hence it is possible to perform traversals,

insertions, deletions without using either stack or recursion. In this

chapter, you will learn about the Height balance tree which is also known

AVL tree is a binary search tree in which the difference of heights of left

and right subtrees of any node is less than or equal to one. The technique

of balancing the height of binary trees was developed by Adelson, Velsk

and hence given the short form as AVL tree or Balanced

What if the input to binary search tree comes in a sorted (ascending or

descending) manner? It will then look like this –

t is observed that BST's worst

search algorithms, that is Ο(n). In real

pattern and their frequencies. So, a need arises to balance out the

existing BST.

250

Named after their inventor

height balancing binary searc

and the right sub-trees and assures that the difference is not more than

1.

This difference is called the

Consider the following trees.

and the next two trees are not balanced

In the second tree, the left subtree of

has height 0, so the difference is 2. In the third tree, the right subtree

of A has height 2 and the left is missing, so it is 0, and the diffe

again. AVL tree permits difference (balance factor) to be only 1.

BalanceFactor = height(left

II Semester :: Data Structures :: AVL Trees ::

It is observed that BST's worst-case performance is closest to linear

search algorithms, that is Ο(n). In real-time data, we cannot predict data

pattern and their frequencies. So, a need arises to balance out the

Named after their inventor Adelson, Velsky and Landis, AVL trees

height balancing binary search tree. AVL tree checks the height of the left

trees and assures that the difference is not more than

This difference is called the Balance Factor.

Consider the following trees. Here we see that the first tree is balanced

next two trees are not balanced −

In the second tree, the left subtree of C has height 2 and the right subtree

has height 0, so the difference is 2. In the third tree, the right subtree

has height 2 and the left is missing, so it is 0, and the diffe

again. AVL tree permits difference (balance factor) to be only 1.

= height(left-subtree) − height(right-subtree)

case performance is closest to linear

251

time data, we cannot predict data

pattern and their frequencies. So, a need arises to balance out the

AVL trees.

